9,936 research outputs found

    Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect

    Full text link
    Modern nanotechnology opens the possibility of combining nanocrystals of various materials with very different characteristics in one superstructure. The resultant superstructure may provide new physical properties not encountered in homogeneous systems. Here we study theoretically the optical properties of hybrid molecules composed of semiconductor and metal nanoparticles. Excitons and plasmons in such a hybrid molecule become strongly coupled and demonstrate novel properties. At low incident light intensity, the exciton peak in the absorption spectrum is broadened and shifted due to incoherent and coherent interactions between metal and semiconductor nanoparticles. At high light intensity, the absorption spectrum demonstrates a surprising, strongly asymmetric shape. This shape originates from the coherent inter-nanoparticle Coulomb interaction and can be viewed as a non-linear Fano effect which is quite different from the usual linear Fano resonance.Comment: 5 pages, 5 figures, submitted to Phys. Rev. Let

    Multiband theory of quantum-dot quantum wells: Dark excitons, bright excitons, and charge separation in heteronanostructures

    Full text link
    Electron, hole, and exciton states of multishell CdS/HgS/CdS quantum-dot quantum well nanocrystals are determined by use of a multiband theory that includes valence-band mixing, modeled with a 6-band Luttinger-Kohn Hamiltonian, and nonparabolicity of the conduction band. The multiband theory correctly describes the recently observed dark-exciton ground state and the lowest, optically active, bright-exciton states. Charge separation in pair states is identified. Previous single-band theories could not describe these states or account for charge separation.Comment: 10 pages of ReVTex, 6 ps figures, submitted to Phys. Rev.

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    General Equilibrium

    Get PDF

    Laser stripping of hydrogen atoms by direct ionization

    Get PDF
    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers

    Metering and Calibration in LoanSTAR Buildings

    Get PDF
    End-use metering in commercial buildings often requires installation of a large variety of transducers and data loggers. The metering installation group in the LoanSTAR monitoring program has the primary responsibility for the installation and maintenance of the metering hardware. This paper provides an overview of the responsibilities and first year experiences of the metering installation group of the LoanSTAR monitoring program. In addition, the calibration laboratory is also described

    PP-waves with torsion and metric-affine gravity

    Full text link
    A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. We generalise this definition to metric compatible spacetimes with torsion and describe basic properties of such spacetimes. We use our generalised pp-waves for constructing new explicit vacuum solutions of quadratic metric-affine gravity.Comment: 17 pages, LaTeX2

    Predicion of charge separation in GaAs/AlAs cylindrical Russian Doll nanostructures

    Full text link
    We have contrasted the quantum confinement of (i) multiple quantum wells of flat GaAs and AlAs layers, i.e. (\GaAs)_{m}/(\AlAs)_n/(\GaAs)_p/(\AlAs)_q, with (ii) ``cylindrical Russian Dolls'' -- an equivalent sequence of wells and barriers arranged as concentric wires. Using a pseudopotential plane-wave calculation, we identified theoretically a set of numbers (m,n,pm,n,p and qq) such that charge separation can exist in ``cylindrical Russian Dolls'': the CBM is localized in the inner GaAs layer, while the VBM is localized in the outer GaAs layer.Comment: latex, 8 page

    PHOTOCHEMISTRY OF PHYCOBILIPROTEINS

    Get PDF
    Native PEC from the cyanobacterium, Mastigocladus laminosus, and its isolated α-subunit show photoreversibly photochromic reactions with difference-maxima around 502 and 570 nm in the spectral region of the α-84 phycoviolobilin chromophore. (b) Native PEC and its ÎČ-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores on the ÎČ-subunit absorb maximally, (c) Reversible photochemistry is retained in ureadenatured PEC at pH = 7.0 or pH ≀ 3. The difference maxima are shifted to 510 and 600 nm, and the amplitudes are decreased. An irreversible absorbance increase occurs around 670 nm (pH ≀ 3). (d) The amplitude of the reversible photoreaction difference spectrum is maximum in the presence of 4–5 M urea or 1 M KSCN, conditions known to dissociate phycobiliprotein aggregates into monomers. At the same time, the phycocyanobilin chromophore(s) are bleached irreversibly, (e) The amplitude becomes very small in high aggregates, e.g. in phycobilisomes. (f) In a reciprocal manner, the phototransformation of native PEC leads to a reversible shift of its aggregation equilibrium between trimer and monomer. The latter is favored by orange, the former by green light, (g) It is concluded that the phycoviolobilin chromophore of PEC is responsible for reversible photochemistry in PEC, and that there is not only an influence of aggregation state on photochemistry, but also vice versa an effect of the status of the chromophore on aggregation state. This could constitute a primary signal in the putative function as sensory pigment, either directly, or indirectly via the release of other polypeptides, via photodynamic effects, or the like
    • 

    corecore