research

Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect

Abstract

Modern nanotechnology opens the possibility of combining nanocrystals of various materials with very different characteristics in one superstructure. The resultant superstructure may provide new physical properties not encountered in homogeneous systems. Here we study theoretically the optical properties of hybrid molecules composed of semiconductor and metal nanoparticles. Excitons and plasmons in such a hybrid molecule become strongly coupled and demonstrate novel properties. At low incident light intensity, the exciton peak in the absorption spectrum is broadened and shifted due to incoherent and coherent interactions between metal and semiconductor nanoparticles. At high light intensity, the absorption spectrum demonstrates a surprising, strongly asymmetric shape. This shape originates from the coherent inter-nanoparticle Coulomb interaction and can be viewed as a non-linear Fano effect which is quite different from the usual linear Fano resonance.Comment: 5 pages, 5 figures, submitted to Phys. Rev. Let

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020