13,866 research outputs found

    Development of a gas pressure bonded four-pole alternator rotor

    Get PDF
    Methods were developed for fabrication of a solid four pole alternator rotor by hot isostatic pressure welding. The rotor blanks welded in this program had complex geometrical mating interfaces and were of considerable bulk, being approximately 3-1/2 inches (0.089 meters) in diameter and 14 inches (0.356 meters) long. Magnetic end pieces were machined from AlSl 4340 steel, while the non-magnetic central section was of Inconel 718. Excellent welds were produced which were shown to be responsive to post weld heat treatments which substantially improved joint strength. Prior to welding the rotors, test specimens of complex geometry were welded to demonstrate that complex surfaces with intentional mechanical misfit could be readily joined using HIP welding. This preliminary work demonstrated not only that interface compliance is achieved during welding but that welding pressure is developed in these thick sections sufficient to produce sound joints. Integral weld-heat treatment cycles were developed that permitted the attainment of magnetic properties while minimizing residual stress associated with the allotropic transformation of 4340 steel

    Development and study of chemical vapor deposited tantalum base alloys

    Get PDF
    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred

    Arrest of flow and emergence of activated processes at the glass transition of a suspension of particles with hard sphere-like interactions

    Get PDF
    By combining aspects of the coherent and self intermediate scattering functions, measured by dynamical light scattering on a suspension of hard sphere-like particles, we show that the arrest of particle number density fluctuations spreads from the position of the main structure factor peak. Taking the velocity auto-correlation function into account we propose that as density fluctuations are arrested the system's ability to respond to diffusing momentum currents is impaired and, accordingly, the viscosity increases. From the stretching of the coherent intermediate scattering function we read a quantitative manifestation of the undissipated thermal energy, the source of those, ergodicity restoring, processes that short-circuit the sharp transition to a perfect glass.Comment: 9 pages, 4 figure

    Urban solar photovoltaics potential: An inventory and modelling study applied to the San Fernando Valley region of Los Angeles

    Get PDF
    Procedures for analyzing the potential of solar photovoltaic collectors to meet energy requirements in a metropolitan region are described and a modeling effort is applied to the San Fernando Valley region of Los Angeles. The procedure involves a series of steps designed to produce maps and tabulations revealing the amount of rooftop area available for establishing solar collectors and the proportion of energy requirement that could be potentially supplied by solar photovoltaics within each of the 533 mainline feeder service areas in the study area. For the sixty five square mile study area, the results showed that, with half the available flat and south facing roofs used and assuming the availability of energy storage, 52.7 percent of the actual kWh energy requirements could have been met in 1978 using photovoltaic collectors. Hourly, daily, weekly, and monthly fluctuations in potential supply and actual loads and recommendations of avenues for further research are discussed. Some further potential applications of the modeling technique are suggested

    Multiband theory of quantum-dot quantum wells: Dark excitons, bright excitons, and charge separation in heteronanostructures

    Full text link
    Electron, hole, and exciton states of multishell CdS/HgS/CdS quantum-dot quantum well nanocrystals are determined by use of a multiband theory that includes valence-band mixing, modeled with a 6-band Luttinger-Kohn Hamiltonian, and nonparabolicity of the conduction band. The multiband theory correctly describes the recently observed dark-exciton ground state and the lowest, optically active, bright-exciton states. Charge separation in pair states is identified. Previous single-band theories could not describe these states or account for charge separation.Comment: 10 pages of ReVTex, 6 ps figures, submitted to Phys. Rev.

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    Dynamics of hard-sphere suspension using Dynamic Light Scattering and X-Ray Photon Correlation Spectroscopy: dynamics and scaling of the Intermediate Scattering Function

    Get PDF
    Intermediate Scattering Functions (ISF's) are measured for colloidal hard sphere systems using both Dynamic Light Scattering (DLS) and X-ray Photon Correlation Spectroscopy (XPCS). We compare the techniques, and discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range of scattering vectors. We investigate the scaling behaviour found by Segre and Pusey [1] but challenged by Lurio et al. [2]. We observe a scaling behaviour over several decades in time but not in the long time regime. Moreover, we do not observe long time diffusive regimes at scattering vectors away from the peak of the structure factor and so question the existence of a long time diffusion coefficients at these scattering vectors.Comment: 21 pages, 11 figure

    Stabilization of peptide-based vesicles via in situ oxygen-mediated cross-linking

    Get PDF
    Reversible vesicles from poly(L-glutamic acid) 65-block-poly[(L-lysine)-ran-(L-3,4-dihydroxyphenylalanine)] 75 [PLGA 65-b-P(LL-r-DOPA) 75] block copolypeptide adopt different configurations depending on the surrounding pH. At pH=3, AFM and TEM images show ellipsoidal morphologies, whereas at pH=12 both TEM and AFM reveal the formation of hollow vesicles. At pH=12, the P(LL-r-DOPA) block forms the internal layer of the vesicle shell and the subsequent oxygen-mediated oxidation of the phenolic groups of the DOPA lead to the formation of quinonic intermediates, which undergo intermolecular dimerization to stabilize the vesicles via in situ cross-linking. Consequently, the vesicles maintain their shape even when the pH is reversed back to 3, as confirmed by AFM and TE

    Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers

    Get PDF
    A series of novel brush triblock copolymers containing 'glassy' fluorinated polyimide, poly((4,4'-hexafluoroisopropylidene diphthalic anhydride)-co-(2,3,5,6-tetramethyl-1,4-phenylenediamine)) (poly(6FDA-co-TMPD)), and 'rubbery' polydimethylsiloxane monomethacrylate (PDMS-MA) were synthesized and characterized. Well-defined difunctional poly(6FDA-co-TMPD) with a,w-amino end-groups was initially prepared via step-growth polymerization using precise control of the diamine (TMPD) to dianhydride (6FDA) ratio. Subsequent functionalization with 2-bromoisobutyryl bromide afforded a telechelic macroinitiator suitable for atom transfer radical polymerization (ATRP). The macroinitiator and its diamino poly(6FDA-co-TMPD) precursor were characterized via gel permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR) spectroscopic analysis and matrix assisted laser desorption ionization time-of-flight (MALDI ToF) mass spectroscopy. ATRP of PDMS-MA using the macroinitiator in different molar ratios afforded a series of brush triblock copolymers with high monomer conversions (88-94%) and varying PDMS weight fractions. Self-assembly of the triblock brush copolymers in dimethylformamide (DMF) afforded nanoparticles with hydrodynamic diameters (dH) ranging from 87 to 109 nm, as determined by dynamic light scattering (DLS) analysis. Cross-linking of the nanoparticles was achieved via hydrogen abstraction through the thermal degradation of benzoyl peroxide. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) revealed that the self-assemblies and their cross-linked derivatives had spherical morphologies
    corecore