2,263 research outputs found

    Testing Asymmetric-Information Asset Pricing Models

    Get PDF
    Theoretical asset pricing models routinely assume that investors have heterogeneous information. We provide direct evidence of the importance of information asymmetry for asset prices and investor demands using plausibly exogenous variation in the supply of information caused by the closure of 43 brokerage firms' research operations in the U.S. Consistent with predictions derived from a Grossman and Stiglitz-type model, share prices and uninformed investors' demands fall as information asymmetry increases. Cross-sectional tests support the comparative statics: Prices and uninformed demand experience larger declines, the more investors are uninformed, the larger and more variable is stock turnover, the more uncertain is the asset's payoff, and the noisier is the better-informed investors' signal. We show that at least part of the fall in prices is due to expected returns becoming more sensitive to liquidity risk. Our results imply that information asymmetry has a substantial effect on asset prices and that a primary channel linking asymmetry to prices is liquidity

    High-bone-mass causing mutant LRP5 receptors are resistant to endogenous inhibitors in vivo

    Get PDF
    Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes ((8kb) Dmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes ((2.3kb) Col1a1-Dkk1). We observed that the (8kb) Dmp1-SOST transgene significantly lowered whole-body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone-formation rate (BFR) in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The (2.3kb) Col1a1-Dkk1 transgene significantly lowered whole-body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1

    Human MicroRNA (miR-20b-5p) Modulates Alzheimer’s Disease Pathways and Neuronal Function, and a Specific Polymorphism Close to the \u3cem\u3eMIR20B\u3c/em\u3e Gene Influences Alzheimer’s Biomarkers

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-β peptide (Aβ) contributes to the etiology and progression of the disease. Aβ is derived from the amyloid-β precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aβ regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aβ1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3′-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of “pathogenic” Aβ, the molecular etiology of AD is likely to not just be a disease of “excess” but a disruption of delicate homeostasi

    14-3-3 σ Expression Effects G2/M Response to Oxygen and Correlates with Ovarian Cancer Metastasis

    Get PDF
    In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O₂ levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O₂ may be undesirable. To understand better the impact of O₂ on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O₂.Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O₂, but some display insensitivity to changes in O₂ concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O₂ insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O₂ sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis.Cancer cells show differential proliferative sensitivity to changes in O₂ concentration. Although a direct link between O₂ insensitivity and metastasis was not determined, this investigation showed that an O₂ insensitive phenotype in cancer cells to correlate with metastatic tumor progression

    Evidence for Pleistocene gene flow through the ice-free corridor from extinct horses and camels from Natural Trap Cave, Wyoming

    Get PDF
    Natural Trap Cave (Bighorn Mountains, Wyoming) preserves an abundance of fossil remains from extinct Late Pleistocene fauna and is situated near a past migration route that likely connected populations in Eastern Beringia and the contiguous US—the ice-free corridor between the Cordilleran and Laurentide icesheets. Some palaeontological evidence supports a correspondingly high affinity between fauna recorded in Natural Trap Cave and Eastern Beringia versus elsewhere in the contiguous US, but this hypothesis has not yet been extensively tested using genetic data. In the present study, we analysed 16 horse specimens and one camel specimen from Natural Trap Cave. Of the horse specimens we analysed, we obtained 10 unique and previously unreported mitochondrial haplotypes belonging to two distinct (extinct) genetic clades—two haplotypes corresponded to a caballine horse (Equus sp.) and eight corresponded to the stilt-legged horse (Haringtonhippus francisci). With only one exception, it appears these newly sequenced individuals all shared a common ancestor more recently with Eastern Beringian individuals than with others from the contiguous US. In addition, mitochondrial data from a specimen assigned to Camelops sp. revealed that it shares a closer affinity with specimens from the Yukon Territory than those from Idaho or Nevada, though all appear to belong to a single species (“yesterday''s camel”; Camelops cf. hesternus). Together, these results are consistent with a high level of genetic connectivity between horse and camel populations in the Bighorn Mountains and Eastern Beringia during the Pleistocene. © 2021 Elsevier Ltd and INQU

    Head Impact Exposure in Youth Football: Elementary School Ages 9–12 Years and the Effect of Practice Structure

    Get PDF
    Head impact exposure in youth football has not been well-documented, despite children under the age of 14 accounting for 70% of all football players in the United States. The objective of this study was to quantify the head impact exposure of youth football players, age 9–12, for all practices and games over the course of single season. A total of 50 players (age = 11.0 ± 1.1 years) on three teams were equipped with helmet mounted accelerometer arrays, which monitored each impact players sustained during practices and games. During the season, 11,978 impacts were recorded for this age group. Players averaged 240 ± 147 impacts for the season with linear and rotational 95th percentile magnitudes of 43 ± 7 g and 2034 ± 361 rad/s(2). Overall, practice and game sessions involved similar impact frequencies and magnitudes. One of the three teams however, had substantially fewer impacts per practice and lower 95th percentile magnitudes in practices due to a concerted effort to limit contact in practices. The same team also participated in fewer practices, further reducing the number of impacts each player experienced in practice. Head impact exposures in games showed no statistical difference. While the acceleration magnitudes among 9–12 year old players tended to be lower than those reported for older players, some recorded high magnitude impacts were similar to those seen at the high school and college level. Head impact exposure in youth football may be appreciably reduced by limiting contact in practices. Further research is required to assess whether such a reduction in head impact exposure will result in a reduction in concussion incidence

    Spatial variation of Anopheles-transmitted Wuchereria bancrofti and Plasmodium falciparum infection densities in Papua New Guinea.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.The spatial variation of Wuchereria bancrofti and Plasmodium falciparum infection densities was measured in a rural area of Papua New Guinea where they share anopheline vectors. The spatial correlation of W. bancrofti was found to reduce by half over an estimated distance of 1.7 km, much smaller than the 50 km grid used by the World Health Organization rapid mapping method. For P. falciparum, negligible spatial correlation was found. After mass treatment with anti-filarial drugs, there was negligible correlation between the changes in the densities of the two parasites
    corecore