43 research outputs found

    Drivers of respiratory syncytial virus seasonal epidemics in children under 5 years in Kilifi, coastal Kenya

    Get PDF
    Respiratory syncytial virus (RSV) causes significant childhood morbidity and mortality in the developing world. The determinants of RSV seasonality are of importance in designing interventions. They are poorly understood in tropical and sub-tropical regions in low- and middle-income countries. Our study utilized long-term surveillance data on cases of RSV associated with severe or very severe pneumonia in children aged 1 day to 59 months admitted to the Kilifi County Hospital. A generalized additive model was used to investigate the association between RSV admissions and meteorological variables (maximum temperature, rainfall, absolute humidity); weekly number of births within the catchment population; and school term dates. Furthermore, a time-series-susceptible-infected-recovered (TSIR) model was used to reconstruct an empirical transmission rate which was used as a dependent variable in linear regression and generalized additive models with meteorological variables and school term dates. Maximum temperature, absolute humidity, and weekly number of births were significantly associated with RSV activity in the generalized additive model. Results from the TSIR model indicated that maximum temperature and absolute humidity were significant factors. Rainfall and school term did not yield significant relationships. Our study indicates that meteorological parameters and weekly number of births potentially play a role in the RSV seasonality in this region. More research is required to explore the underlying mechanisms underpinning the observed relationships

    Global Disease Burden Estimates of Respiratory Syncytial Virus–Associated Acute Respiratory Infection in Older Adults in 2015::A Systematic Review and Meta-Analysis

    Get PDF
    Respiratory syncytial virus associated acute respiratory infection (RSV-ARI)constitutes a substantial disease burden in older adults≄65 years. We aimed to identify all studies worldwide investigating the disease burden ofRSV-ARIin this population. We estimated thecommunityincidence, hospitalisationrate and in-hospital case fatality ratio (hCFR) of RSV-ARI in older adults stratified by industrialized anddeveloping regions, with data from a systematic review ofstudies published between January 1996 and April 2018, and from 8 unpublished population-based studies. We applied these rate estimates to population estimates for 2015, to calculate the global and regional burdenin older adults with RSV-ARIin community and in hospital duringthat year. We estimated thenumber ofin-hospital RSV-ARIdeaths by combining hCFR with hospital admission estimates from hospital-based studies. In 2015, there were about 1.5million(95% CI 0.3-6.9) episodes of RSV-ARIin older adults in41industrialised countries (data missing in developing countries), and of these 214,000 (~14.5%; 95% CI 100,000-459,000) were admitted to hospitals. The global number of hospital admissionsforRSV-ARI in older adults was estimated at 336,000 (UR 186,000-614,000).We further estimated about 14,000 (UR 5,000-50,000) in-hospital deaths related to RSV-ARIglobally.The hospital admission rate and hCFR were higher for those ≄65 years than those aged 50-64 years. The disease burden of RSV-ARIamong older adults is substantialwith limited data from developing countries; appropriate prevention and management strategiesare needed to reduce this burden

    Genetic and potential antigenic evolution of influenza A(H1N1)pdm09 viruses circulating in Kenya during 2009-2018 influenza seasons

    Get PDF
    Influenza viruses undergo rapid evolutionary changes, which requires continuous surveillance to monitor for genetic and potential antigenic changes in circulating viruses that can guide control and prevention decision making. We sequenced and phylogenetically analyzed A(H1N1)pdm09 virus genome sequences obtained from specimens collected from hospitalized patients of all ages with or without pneumonia between 2009 and 2018 from seven sentinel surveillance sites across Kenya. We compared these sequences with recommended vaccine strains during the study period to infer genetic and potential antigenic changes in circulating viruses and associations of clinical outcome. We generated and analyzed a total of 383 A(H1N1)pdm09 virus genome sequences. Phylogenetic analyses of HA protein revealed that multiple genetic groups (clades, subclades, and subgroups) of A(H1N1)pdm09 virus circulated in Kenya over the study period; these evolved away from their vaccine strain, forming clades 7 and 6, subclades 6C, 6B, and 6B.1, and subgroups 6B.1A and 6B.1A1 through acquisition of additional substitutions. Several amino acid substitutions among circulating viruses were associated with continued evolution of the viruses, especially in antigenic epitopes and receptor binding sites (RBS) of circulating viruses. Disease severity declined with an increase in age among children aged < 5 years. Our study highlights the necessity of timely genomic surveillance to monitor the evolutionary changes of influenza viruses. Routine influenza surveillance with broad geographic representation and whole genome sequencing capacity to inform on prioritization of antigenic analysis and the severity of circulating strains are critical to improved selection of influenza strains for inclusion in vaccines

    Captures d'écran : la photographie de presse et l'image télévisée

    Get PDF
    Influenza-associated disease burden among children in tropical sub-Saharan Africa is not well established, particularly outside of the 2009 pandemic period. We estimated the burden of influenza in children aged 0-4 years through population-based surveillance for influenza-like illness (ILI) and acute lower respiratory tract illness (ALRI). Household members meeting ILI or ALRI case definitions were referred to health facilities for evaluation and collection of nasopharyngeal and oropharyngeal swabs for influenza testing by real-time reverse transcription polymerase chain reaction. Estimates were adjusted for health-seeking behavior and those with ILI and ALRI who were not tested. During 2008-2012, there were 9,652 person-years of surveillance among children aged 0-4 years. The average adjusted rate of influenza-associated hospitalization was 4.3 (95% CI 3.0-6.0) per 1,000 person-years in children aged 0-4 years. Hospitalization rates were highest in the 0-5 month and 6-23 month age groups, at 7.6 (95% CI 3.2-18.2) and 8.4 (95% CI 5.4-13.0) per 1,000 person-years, respectively. The average adjusted rate of influenza-associated medically attended (inpatient or outpatient) ALRI in children aged 0-4 years was 17.4 (95% CI 14.2-19.7) per 1,000 person-years. Few children who had severe laboratory-confirmed influenza were clinically diagnosed with influenza by the treating clinician in the inpatient (0/33, 0%) or outpatient (1/109, 0.9%) settings. Influenza-associated hospitalization rates from 2008-2012 were 5-10 times higher than contemporaneous U.S. estimates. Many children with danger signs were not hospitalized; thus, influenza-associated severe disease rates in Kenyan children are likely higher than hospital-based estimates suggest

    Respiratory syncytial virus seasonality in three epidemiological zones of Kenya

    Get PDF
    Understanding respiratory syncytial virus (RSV) circulation patterns is necessary to guide the timing of limited‐duration interventions such as vaccines. We describe RSV circulation over multiple seasons in three distinct counties of Kenya during 2006‐2018. Kilifi and Siaya counties each had consistent but distinct RSV seasonality, lasting on average 18‐22 weeks. Based on data from available years, RSV did not have a clear pattern of circulation in Nairobi. This information can help guide the timing of vaccines and immunoprophylaxis products that are under development

    Rhinovirus dynamics across different social structures

    Get PDF
    Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40 types), cumulatively representing &gt;90% of all known RV types. Notably, RV diversity correlated directly with the size of the population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies. Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures

    Malaria infection and severe disease risks in Africa

    Get PDF
    The relationship between community prevalence of Plasmodium falciparum and the burden of severe, life-threatening disease remains poorly defined. To examine the three most common severe malaria phenotypes from catchment populations across East Africa, we assembled a dataset of 6506 hospital admissions for malaria in children aged 3 months to 9 years from 2006 to 2020. Admissions were paired with data from community parasite infection surveys. A Bayesian procedure was used to calibrate uncertainties in exposure (parasite prevalence) and outcomes (severe malaria phenotypes). Each 25% increase in prevalence conferred a doubling of severe malaria admission rates. Severe malaria remains a burden predominantly among young children (3 to 59 months) across a wide range of community prevalence typical of East Africa. This study offers a quantitative framework for linking malaria parasite prevalence and severe disease outcomes in children

    Malaria hospitalisation in East Africa: age, phenotype and transmission intensity.

    Get PDF
    BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≄ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≄10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden
    corecore