
ARTICLE OPEN

Rhinovirus dynamics across different social structures
Martha M. Luka1,2,11✉, James R. Otieno1, Everlyn Kamau1, John Mwita Morobe1, Nickson Murunga1, Irene Adema1, Joyce Uchi Nyiro1,
Peter M. Macharia3,4,5, Godfrey Bigogo6, Nancy A. Otieno6, Bryan O. Nyawanda6, Maia A. Rabaa7, Gideon O. Emukule8,
Clayton Onyango8, Patrick K. Munywoki1,8, Charles N. Agoti1,9 and D. James Nokes1,10✉

Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct
social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across
four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics
Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV
infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40
types), cumulatively representing >90% of all known RV types. Notably, RV diversity correlated directly with the size of the
population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the
critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies.
Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures.
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INTRODUCTION
Rhinoviruses (RV) are common respiratory pathogens transmitted
via inhalation of contaminated aerosols or direct person-to-person
contact1. They are positive-sense, single-stranded RNA viruses,
with a genome ~7.2 kb long and a mutation rate ranging 10−3 to
10−5 mutations per nucleotide per genome replication event2. RV
are classified into 169 types3,4, which are spread across three
species: RV-A, RV-B, and RV-C. The types found in species A and B
are proven to be antigenically unique from each other. However,
for species C, this antigenic distinctiveness is yet to be confirmed5.
RV-A and some RV-B utilize the intercellular adhesion molecule-1
(ICAM-1) as their receptor1, while RV-C uses a cadherin-related
family member 3 (CDHR3) as their cellular receptor2. Rhinovirus
prevalence in samples of individuals presenting with acute
respiratory illness is estimated to be between 13–59% globally6–10,
and 10–38.3% in Kenya11–15. Previously thought to cause only mild
and self-resolving common-cold syndrome, RV are also an
established cause of severe respiratory illnesses in both children
and adults8,10,16,17. There is no approved RV antiviral, and vaccine
development efforts have been hampered by the degree of
antigenic diversity3.
Current epidemiological understanding of RV is restricted to the

genetic diversity and transmission within individual settings such
as hospitals, schools, or households7,15,18–21. RV infections occur
year-round and are characterized by localized type-specific ‘mini-
epidemics’21,22. Numerous types co-circulate within a setting, and
their profiles change temporally13,23. Community social structures
shape contact patterns24, thus shaping infectious disease trans-
mission25. There is limited understanding of how RV circulation
dynamics compare across different social structures and the
degree to which local studies reflect the wider community at a

national or global level. The design of effective non-
pharmaceutical intervention strategies against RV can be
improved by a detailed comprehension of its transmission
dynamics across different social structures.
Tracking the spread of viral respiratory infections using

nucleotide sequence data has become a useful tool to inform
public health interventions on outbreak management. We aimed
to improve understanding of RV dynamics across four social
structures in Kenya of variable geographical coverage: (i) house-
holds in a single administrative location, (ii) a public primary
school, (iii) outpatient clinics in a Health and Demographics and
Surveillance System (HDSS), with (i)-(iii) all from rural coastal Kenya
(Kilifi County) and (iv) hospital inpatients and outpatients across
Kenya. Given the abundance of RV infections, understanding its
dynamics across social structures will inform design and delivery
of future interventions. Furthermore, RV dynamics might act as a
proxy for other similarly transmitted but less frequent or possibly
more severe respiratory viruses, such as influenza A, respiratory
syncytial virus, and SARS-CoV-2.

MATERIALS AND METHODS
Studies and ethics
We analysed sequence data from five studies across Kenya,
cumulatively undertaken across four social structures (Fig. 1): (i)
intensive household surveillance in a rural location in coastal
Kenya19, (ii) surveillance of respiratory viruses within a school
setting21, (iii) outpatient surveillance of acute respiratory illness
(ARI) within the Kilifi HDSS22, and (iv) countrywide surveillance of
severe acute respiratory illness (SARI) among inpatients and
influenza-like illness (ILI) among outpatients via sentinel hospital
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reporting26. For comparison with the households, school and Kilifi
HDSS studies’ datasets, we used contemporaneous data from (v)
long-term surveillance of severe pneumonia among pediatric
inpatients at the Kilifi County Hospital (KCH)15,27–29. The KCH data
was collected during the same timeframe and was sourced from
the same study population, i.e., rural coastal Kenya.
For each of these studies, informed written parental consent for

persons under the age of 18 years or individual consent for adults
was obtained before sample collection. All studies adhered to the
principles of the Declaration of Helsinki. Ethical approvals were
provided by the KEMRI-Scientific Ethics Review Unit, the University
of Warwick Biomedical and Scientific Research Ethics Committee
and the CDC Institutional Review Board: households (SSC #1651),
school (KEMRI-SERU #3332 and BSREC #REGO_2016-1858); HDSS
(KEMRI-SERU #3103 and BSREC #REGO-2015–6102); Countrywide
(KEMRI-SERU #3044, CDC IRB #6806 and Project ID:
0900f3eb81e74404) and KCH (KEMRI-SERU #3443 and SSC
#3178). The studies were approved to use pre-existent, pseudo-
nymized specimens and data and had ethical approval for
specimens to be tested to a broad range of respiratory pathogens.
The five studies above are distinct and independent of each

other, and a summary of the individual studies and sampling for
extensive RV analysis is described in Supplementary Table 1.
Detailed information on study designs is described in previous
publications11,14,15,29–31 and RV analyses have also been
reported13,19,21,22,26. The geographic locations of the studies are
depicted in Fig. 1.

Data
The households study had 256 sequences (Dec 2009–May 2010),
the school study had 256 sequences (May 2017–April 2018), the
Kilifi HDSS study had 613 sequences (Dec 2015–Nov 2016), and
the countrywide study had 803 sequences (Jan 2014–Dec 2014).

Contemporaneous KCH sequences identified were: 73 sequences
for the households study period, 66 sequences for the school
study period and 81 sequences for the Kilifi HDSS study period.
We present previously unreported VP4/2 sequences (n= 225) of

length ~420 bases from five households within the same location
as (i) above, generated using the same laboratory protocol as the
previous household data19 (protocol also described below). The
new data were merged with prior household data for analysis. For
phylogenetic comparison, we also included global VP4/
2 sequences (n= 918) downloaded from the GenBank database.
These were filtered to remove sequences from non-human
samples, those shorter than 350 bases and sequences with
missing metadata on date and location of sampling. Samples
included in the analysis were from 35 countries across the world.
In total, 2373 Kenyan and 918 global VP4/2 sequences were

analysed in this study. A breakdown of samples from each of the
studies is provided in Supplementary Table 2.

RV screening, sequencing, and type assignment
In all the studies above, RNA was extracted from nasopharyngeal
swabs (NPS) and screened for respiratory viruses using a multiplex
real-time reverse-transcription polymerase chain reaction (rRT-
PCR)27,32,33. RV positivity was defined by a Ct-value of <35.0 for the
school, Kilifi HDSS, KCH and countrywide studies, and <40.0 for the
households study. The households study aimed to identify who
infects whom and so it was important to be comprehensive in
identifying infections, hence a lower threshold for viral titres was
used for sequencing. RV-positive samples were amplified in the
VP4/2 region and sequenced on an ABI 3130xl instrument (Applied
Biosystems, USA). Forward and reverse complementary sequence
reads were assembled into contigs using Sequencher version 5.4.6
(www.genecodes.com). RV type assignment was based on pairwise
genetic distances as proposed (10.5% for HRV-A, 9.5% for HRV-B,

Fig. 1 Geographical setting and time span of the studies included in the analysis. a A map of Kenya highlighting the countrywide study
sites; b the Kilifi HDSS outpatient study sites, also showing the school location in Junju and the Kilifi County Hospital (KCH). c Households
within Matsangoni location of the Kilifi Health and Demographics Surveillance System (HDSS). The map (a–c) is author created in ArcMap
V.10.5 (ESRI, Redlands, California, USA). d Study periods of the included studies. Only contemporary KCH samples were included in the analysis
i.e., KCH samples collected during the household, Kilifi HDSS and school studies. CRH County Referral Hospital, RC Refugee Camp, KCH Kilifi
County Hospital.
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and 10.5% for HRV-C)34,35 and phylogenetic clustering on
Maximum Likelihood trees with prototype strains
(www.picornaviridae.com/ensavirinae/enterovirus/prototypes/
prototypes.htm)13,19,21,22,26.

Comparison of RV-type spatial and temporal dynamics
Data analysis was performed using R version 4.2.1 (CRAN R
Project). Categorical variables were summarized into counts and
proportions. Kernel densities were used to infer the temporal
patterns and define type-specific mini-epidemic waves across
administrative locations. A type-specific mini-epidemic wave was
defined as infections of the same type occurring in the same
spatial and temporal frame, with no more than 14 days between
two subsequent samples, as illustrated in Fig. 5b.
The Jaccard similarity index36 was used to evaluate the similarity

of RV types identified in two contemporaneous studies within
Kilifi, e.g., distinct types identified in the KCH study between Dec
2009–May 2010 were compared to those identified in the
households. The Jaccard index ranges from 0 to 1 and gauges

the diversity/similarity of sample sets, with higher values
indicating higher similarity.

Phylogenetic analysis
Bayesian phylogenetic analysis was done for the five most
frequent RV types per social structure that were detected in more
than one spatial frame therein. Type-specific global sequences,
where present, were merged with the local sequences. Sequence
alignments were prepared using the default algorithm in MAFFT
v7.48037 and manually curated after alignment. The best-fitting
nucleotide substitution and site heterogeneity model for each
alignment were determined using ModelFinder38 in IQ-TREE
v2.0.339 and applied to BEAST v1.10.440. We specified an
uncorrelated lognormal relaxed molecular clock. Each model
was run for at least 100 million Markov Chain Monte Carlo (MCMC)
iterations ensuring Effective Sample Size (ESS) values > 200.
Maximum clade credibility (MCC) trees were identified using
TreeAnnotator v1.10.4 after removal of 10% burn-in and visualized
using the R package ggtree41.
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Fig. 2 Summary of rhinovirus (RV) types observed. a Frequency counts of distinct RV types across the scales of observation. The studies are
ordered by study year i.e., household (Dec 2009–May 2010), countrywide (Jan 2014–Dec 2014), Kilifi HDSS (Dec 2015–Nov 2016) and school
(May 2017–April 2018). Contemporaneous KCH samples are coloured orange. b–e Temporal kernel density distributions of frequent RV types
within the households, school, Kilifi HDSS, and countrywide study periods, respectively. Contemporaneous KCH samples are coloured orange.
KHDSS Kilifi Health and Demographics Surveillance System.
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Table 1. Frequencies of the ten most prevalent RV types per study and their respective frequencies in alternative studies.

Type Households
Year 2009/10
n= 482

Countrywide
Year 2014
n= 803

Kilifi HDSS
Year 2015/16
n= 613

School
Year 2017/18
n= 256

Households

Count (n) Percent (%) Count (n) Percent (%) Count (n) Percent (%) Count (n) Percent (%)

B27 64 13.3 3 0.4 6 1.0 0 0.0

C35 62 12.9 8 1.0 1 0.2 0 0.0

A66 58 12.1 0 0.0 6 1.0 0 0.0

A75 40 8.3 0 0.0 2 0.3 0 0.0

C1 35 7.3 4 0.5 20 3.3 0 0.0

C15 27 5.6 10 1.3 20 3.3 0 0.0

C43 23 4.6 9 1.1 4 0.7 0 0.0

A46 13 2.7 3 0.4 2 0.3 6 2.3

A60 13 2.7 0 0.0 0 0.0 0 0.0

A33 12 2.5 7 0.9 0 0.0 0 0.0

C5 12 2.5 0 0.0 0 0.0 0 0.0

Total 359 74.6 44 5.5 61 10.0 6 2.3

Countrywide

Count (n) Percent Count (n) Percent Count (n) Percent Count (n) Percent

A22 0 0.0 42 5.2 0 0.0 0 0.0

A34 0 0.0 35 4.4 0 0.0 1 0.4

A58 0 0.0 27 3.4 18 2.9 0 0.0

A12 11 2.3 26 3.2 10 1.6 0 0.0

A78 0 0.0 23 2.9 3 0.5 1 0.4

C37 0 0.0 22 2.7 3 0.5 0 0.0

A21 0 0.0 21 2.6 0 0.0 0 0.0

A49 0 0.0 20 2.5 0 0.0 3 1.2

C10 0 0.0 18 2.2 1 0.2 6 2.4

B70 0 0.0 18 2.2 2 0.3 22 8.6

Total 11 2.3 252 31.4 37 6.0 33 12.9

Kilifi HDSS

A15 0 0.0 1 0.1 62 10.1 0 0.0

C11 0 0.0 1 0.1 45 7.3 1 0.4

B35 0 0.0 3 0.4 29 4.7 0 0.0

C22 0 0.0 1 0.1 28 4.6 0 0.0

C1 35 7.3 4 0.5 20 3.3 0 0.0

C15 27 5.6 10 1.2 20 3.3 0 0.0

A58 0 0.0 27 3.4 18 2.9 0 0.0

C36 0 0.0 12 1.5 18 2.9 4 1.6

C38 0 0.0 1 0.1 18 2.9 0 0.0

A41 0 0.0 0 0.0 17 2.8 0 0.0

Total 62 12.9 60 7.5 275 44.9 5 2.0

School

Count (n) Percent Count (n) Percent Count (n) Percent Count (n) Percent

A2 1 0.2 1 0.1 0 0.0 25 9.9

B70 0 0.0 18 2.2 2 0.3 22 8.6

A36 0 0.0 3 0.4 0 0.0 16 6.3

B48 0 0.0 0 0.0 0 0.0 16 6.3

C13 0 0.0 1 0.1 0 0.0 13 5.1

C3 0 0.0 4 0.5 0 0.0 13 5.1

A28 0 0.0 5 0.6 6 1.0 12 4.7

C_pat19 0 0.0 5 0.6 0 0.0 11 4.3

A10 1 0.2 12 1.5 0 0.0 8 3.1

A1 1 0.2 3 0.4 2 0.3 7 2.7
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RV transmission between discrete locations (continent level,
except for Kenyan sequences which were excluded from Africa)
was inferred using the Bayesian Stochastic Search Variable
Selection (BSSVS) under a symmetric diffusion model in BEAST
and thereafter summarized using SpreaD3 v0.9.7.142. Significant
transmission links between locations were defined as those with a
Bayes Factor (BF) value > 3. To obtain a composite RV transmission
signal, we averaged the BF values of significant transmission
pathways across all RV types in the analysis.

Intra-type and (type-specific) inter-wave diversity
The genetic diversity of viruses belonging to the same type (mean
pairwise genetic distances) was calculated for each social structure
using MEGA X43.
We further investigated the genetic diversity across different

mini-epidemic waves of the same type in the same spatial frame.
Starting with the assertion that the basic unit of transmission is an
epidemic wave comprising a variant of a single type that enters
and spreads within a local population and fades out, then multiple
waves/peaks of the same type in the same location are because of
separate introductions and should be identifiable as genetically
different. This way, observed patterns for a single type are
composites of multiple individual introductions, each spreading
independently within the local community.
We performed this analysis on purposively select types with

multiple identifiable mini-epidemic waves in the Kilifi HDSS
(A15, C1, C11) and countrywide studies (A22, A34, A49). We
used a method described by Konishi et al.44 that directly
applies principal component analysis (PCA) to a sequence
alignment. First, the difference between any two samples was
calculated using Euclidean distances. PCA then summarized
the distance matrix to identify the principal components and
record distances between each combination of samples.
Finally, the highest-contributing principal components were
subjected to k-means clustering. The optimal number of
clusters was determined using the within-cluster sum of
squares (wss) index.

Definition of terms
We adopted a flexible definition of the term social structures as
differing arrangement of institutions where people live or interact
with each other. We defined a phylogenetic cluster as a group of
sequences collected either from the same administrative location
or a similar timeframe, supported by a branching posterior
probability of >0.95. These are labelled K1-Kn (Fig. 3) and are
independent from genetic clusters identified using machine
learning (unsupervised learning using k-means clustering), subse-
quently labelled Cluster 1-Cluster n. Unless otherwise stated, the
term (genetic) clusters refers to machine learning clusters.

RESULTS
Overview
The Kenyan sequences were classified into 161 distinct RV types,
of which 157 were known, and four types were unassigned, i.e.,
they did not meet the proposed threshold to any prototype strain.
The countrywide study had the highest number of distinct types
(n= 114), followed by the Kilifi HDSS (n= 78), the school (n= 47)
and ultimately, the households (n= 40). Next, we compared RV
types circulating within the different social structures to con-
temporaneous data from KCH. RV detections in KCH during the
household study period (Dec 2009–May 2010) were classified into
37 types, of which 11 (29.7%) were also present in the household
samples. For the school study period (May 2017–April 2018), KCH
RV detections were classified into 40 types, of which 27 (67.5%)
were shared across the two study populations. Finally, KCH RV
detections during the HDSS study (Dec 2015–Nov 2016) were
classified into 38 types, of which 31 (81.5%) were shared across
the study populations. We used the Jaccard similarity index to
compare types observed in KCH to those observed in the
respective contemporaneous study. The highest similarity/ Jaccard
index score was between the KCH and school study (n= 0.44),
followed by KCH and the HDSS study (n= 0.37), and finally, the
KCH and household study (n= 0.17).

Temporal and spatial variation
Within each social structure, some types were notably more
prevalent than others, and there was an evident turnover of the
highly prevalent types in later years. In subsequent studies,
previously frequent types disappeared or were detected in low
frequencies (Fig. 2a). Starting with the earliest study, the house-
holds study (year 2009/10), the most prevalent types were B27
(n= 64, all detected in one household), C35 (n= 62, detected in 8
households) and A66 (n= 58, detected in 6 households). B27 was
detected in very low frequencies in the countrywide study (year
2014) (n= 3, 0.4%) and the Kilifi HDSS study (year 2015/16) (n= 6,
0.9%) and none in the primary school (year 2017/18). Similarly,
C35 was detected in low frequencies in the countrywide and Kilifi
HDSS (n= 8 and n= 1, respectively) and none in the school study.
On the other hand, A66 was not seen in the countrywide and
school studies but was observed in the Kilifi HDSS study (n= 6).
Interestingly, A58 was highly prevalent in both the countrywide
(n= 27, 3.4%) and the Kilifi HDSS (n= 18, 2.9%) studies, Table 1. Of
the 27 A58 samples identified in the countrywide study, only one
was from Kilifi County, which was the catchment area for the Kilifi
HDSS study. Overall, the high prevalence of types in one location
was not associated with a high prevalence in other locations,
probably the result of temporal changes in incidence.
We observed varying type-specific spatial distributions. Across

the four social structures, the contribution of the ten most
frequent types to total infections varied greatly. The total
proportion of all sequences comprised by the ten most prevalent
types in each social structure was: 74.6% in the household study,

Table 1 continued

Type Households
Year 2009/10
n= 482

Countrywide
Year 2014
n= 803

Kilifi HDSS
Year 2015/16
n= 613

School
Year 2017/18
n= 256

A82 0 0.0 0 0.0 2 0.3 7 2.7

C31 0 0.0 3 0.4 1 0.2 7 2.7

unassigned2 0 0.0 0 0.0 0 0.0 7 2.7

Total 3 0.6 55 6.8 13 2.1 164 64.1

The studies are ordered by year.
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64.1% in the school study, 44.9% in the HDSS study, and 31.4% in
the countrywide study, Table 1.
We used kernel density distributions to demonstrate the spatial

and temporal circulation and persistence of rhinovirus types
within the different social structures (Fig. 2b–e). Frequent types in
the households and school had uni-modal or bi-modal distribu-
tions. In contrast, RV types within the countrywide and Kilifi HDSS
social structures showed multi-modal distributions stretched over
extended periods. The sustained type-specific circulation at the
HDSS and country levels was marked by mini-epidemics that were
synchronised temporally and restricted geographically. For
instance, in the HDSS study, C22 emerged and disappeared
synchronously across the various administrative locations, while
C38 was limited to the study locations in the northern region
(Ngerenya, Sokoke, Mtondia and the KCH) (Supplementary Fig.
1A). At the countrywide level, some neighboring counties also
exhibited potentially synchronous circulation of types, e.g.,
counties in Western Kenya showed similar temporal distributions
of types A58 (Kisumu, Siaya and Kakamega), A21 (Kisumu and
Siaya) and A78 (Kisumu and Kakamega) (Supplementary Fig. 1B).
Although this distribution was characterized by numerous type-
specific genetic clusters in co-circulation, sequences from the
synchronous peaks were more closely related, suggesting inter-
county spread. However, other RV types, e.g., A15 and C11,
appeared to circulate randomly in the different locations with no
defined temporal or spatial pattern.

Local and global transmission dynamics
We performed phylogenetic analysis on 863 Kenyan and 918
global sequences representing 19 RV types (selected by identify-
ing the five most frequent types per social structure), collected
between August 1996 and April 2018. At a continent level, Europe
had the highest number of sequences (n= 340), followed by Asia
(n= 293) and Oceania (n= 205), while the rest of Africa (excluding
Kenya), North and South America had less than 35 sequences
each, Supplementary Table 3.
In the type-specific phylogenies, the school and household

viruses comprised single phylogenetic clusters on the global MCC
tree, Fig. 3. In contrast, viruses from the Kilifi HDSS and
countrywide studies occasionally fell into multiple phylogenetic
clusters, e.g., the C15 and B35 viruses from the HDSS appeared as
two phylogenetic clusters each (K2 and K3, K6 and K7,
respectively), while A22, A34 and A74 viruses from the country-
wide study fell into three (K8-K10), two (K11 and K12) and two
(K13 and K14) phylogenetic clusters, respectively. Sequences from
a given location or similar time frames were often found in more
than one phylogenetic cluster. Temporal clustering of global and
local sequences was only observed in A2, between viruses from
the school study and Europe.
Locally, some RV types suggested in situ evolution and virus

persistence. For instance, A36 viruses in the school (2017/18)
shared recent ancestry with countrywide viruses from 2014. Also,
while households C1 viruses clustered separately with those from
the HDSS, some of the HDSS C1 viruses shared recent ancestry
with those from the school (K1_A). Moreover, K1_B HDSS viruses
shared recent ancestry with those from the countrywide study
(K1_C). While this observation may be due to limited availability of
contemporaneous data, we included all publicly available global
data in the analysis to boost our confidence in the observations. In
contrast, A58 viruses common in the countrywide and HDSS
studies did not share the most recent ancestry, suggesting
independent introductions, Fig. 3.
We used Bayesian Stochastic Search Variable Selection under a

symmetric diffusion model to infer potential virus transmission
links. Most virus transmission links (n= 33) were potentially local
transmission, i.e., within Kenya. The highest number of interna-
tional transmission events were between Kenya - Europe (n= 19),

Kenya - Asia (n= 13), and Kenya - Oceania (n= 8), Fig. 4a. Relative
to sequence numbers, Kenya and Europe displayed 16 transmis-
sion links per 1000 sequences, Kenya and Asia had 11 transmission
links per 1000 sequences and Kenya and Oceania had 7
transmission links per 1000 sequences. Using the mean Bayes
Factor (BF) value, we identified the strongest transmission links as
Kenya-Europe (BF value= 814), Kenya-Asia (BF value= 511) and
Europe-rest of Africa (BF value= 436), Fig. 4b.

Intra-type and (type-specific) inter-wave diversity
We compared the genetic diversity of the ten most frequent RV
types across the four social structures. The intra-type genetic
diversity was lowest at the school level (range 0–1.2%, median =
0.3%), followed by the households (range 0–3.2%, median =
0.4%), the Kilifi HDSS (range 0.6–6.6%, median = 1.3%), and
highest at the countrywide level (range 1.0–6.2%, median = 2.8%),
Fig. 5a. This diversity correlated with the size of geographical
space represented by the respective study, i.e., the school
represented a single point within a location, households were
distributed within a single location, the Kilifi HDSS study sites
provided a representation of an area of 891 km2 and the
countrywide study was a broad representation of Kenya.
We performed PCA and k-means clustering for six select types

to identify genetic clusters of circulating infections within given
geographic locations. All types included in the analysis displayed
genetic diversity, which was refined as three clusters for A15, A49
and C11, and four clusters for A22, A34 and C1, Fig. 5 c.
We zoomed in to the administrative location for the HDSS or

county levels for the countrywide study and made three
noteworthy observations (Supplementary Fig. 2). First, there was
an apparent geographic clustering of infections, suggesting
introduction of a single variant of a type and rapid spread within
the community. For instance, Cluster 1 of A15 was limited to
Mtondia, Ngerenya, and Sokoke, which are neighbouring locations
of the HDSS. Similarly, Cluster 3 of the same type was only
detected in KCH and Mtondia. At the countrywide level, Cluster 3
of A34 was limited to Nakuru and Kakamega, Cluster 2 of A22 to
Kakuma, and while Cluster 1 of A49 was predominantly in the
coastal region (Mombasa and Kilifi), three samples were also
detected in Nairobi. Secondly, some clusters were more common
and widely distributed, e.g., Cluster 2 of A15 was detected in 8 of 9
administrative locations of the HDSS, as well as the KCH. In
addition, Cluster 3 of A22 and Cluster 2 of A34 were detected in
seven and five counties, respectively. Finally, other clusters were
detected in distant locations, e.g., Cluster 1 of A22 was observed in
Kilifi, Nairobi and Siaya and Cluster 3 of C1 was detected in
Matsangoni, Mtondia and Ngerenya, suggesting transmission due
to human travel/migration.
We further investigated the genetic diversity of a single type to

test the hypothesis that multiple epidemic waves for a given type
in a location are because of separate introductions and should be
identifiable as genetically different. At the location or county
levels, 56/84 (66.7%) mini-epidemic waves were caused by a single
genetic cluster, 24/84 (28.6%) waves were caused by two clusters,
and 4/84 (4.8%) were caused by more than two clusters. For
counties/locations that experienced more than one type-specific
wave, a total of 15 mini-epidemic waves were either solely or
jointly (alongside a new genetic cluster) caused by genetic clusters
detected in the previous wave(s). Similarly, an equal number of
waves (n= 15) were composed of new genetic clusters of the
same type, not previously detected in the region, Supplementary
Fig. 2.
Some RV types displayed minimal inter-cluster variance in given

locations/counties. In particular, A34 infections in Nakuru were
classified into three clusters, but these were very closely located
along the PCA coordinate space, indicating minimal variance
between the clusters. Different clusters of C11 infections from the
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KCH and Matsangoni also displayed minimal variance along the
PCA coordinate space, Supplementary Fig. 2. On the other hand,
A34 and C11 epidemic curves in Nakuru and KCH and Matsangoni,
respectively, suggested propagated (progressive source) epi-
demics, Supplementary Fig. 1. The minimal inter-cluster variance,
alongside the propagated epidemic curves, suggests that the virus
may have diversified in situ within the community, creating a
continuous source of genetically diverse infections.

DISCUSSION
We investigated rhinovirus patterns across four social structures of
variable geographical coverage in Kenya to better understand its
transmission and circulation dynamics. We observed a remarkable
degree of genetic diversity within Kenya, documenting the
occurrence of >90% of all known global RV types and four
potentially new types. The country-level demonstrated the highest
diversity (marked by the number of distinct types), followed by the
Kilifi HDSS, school and household levels. Type-specific infections
were also more diverse in the HDSS and countrywide studies
compared to households and the school. As the Kilifi HDSS and

countrywide levels encompass larger geographical areas, it is
anticipated that they would experience more introductions of the
virus. The frequency of these introductions may also be influenced
by factors such as population density and the movement of
people into and out of the specified geographical regions.
The prevalence of certain types in one location did not

necessarily correlate with similar prevalence levels in other
locations. Instead, there was a turnover of the most prevalent
types, which was likely influenced by temporal type dynamics. The
disappearance of types after predominance at broad geographical
scales was consistent with the development of long-term type-
specific immunity45,46. A58 was identified as a frequent type in
both the countrywide study (year 2014) and the subsequent HDSS
study (year 2015/16), the recurring A58 viruses belonged to a
different phylogenetic cluster. This could be stochastic or because
of a fitness advantage of the second A58 cluster over the first
cluster. We propose the analysis of whole genomes to explore
possible mutations in the antigenic viral proteins 1–3 that may
contribute to increased rhinovirus fitness/transmissibility.
Frequent types in households and the school had either uni/bi-

modal distributions in contrast to the countrywide and HDSS. The

a

b

Fig. 4 Rhinovirus transmission links. a Alluvium plots showing the estimated number and flow of RV transmission across the globe. ‘Africa’
refers to origins or destinations in African countries excluding Kenya. b A global map displaying average Bayes Factor (BF) values of significant
transmission links across 19 select RV types. The color of the arc correlates to the average BF value.
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shorter epidemics in the school and household settings can be
explained by the high contact patterns characterizing these
settings24,47 facilitating faster spread of infections. The school and
household studies also represented smaller geographical spaces (a
single administrative location within the HDSS), and it is therefore
anticipated that the circulating virus took a shorter time to
exhaust susceptible individuals. The multi-modal distributions
observed for larger geographical spaces were resultant of multiple
epidemics varying temporally and spatially at smaller geographi-
cal frames therein, i.e., administrative locations in the HDSS and
counties in the countrywide study. Larger geographical spaces
had a higher diversity of type-specific RV infections. Our analysis
showed that this was a factor of multiple concurrent introductions

or subsequent introductions of genetically diverse type-specific
viruses or potential in situ evolution of circulating viruses.
Interestingly, no contemporaneous pair of studies in Kilifi

County detected an identical set of circulating RV types, as
evidenced by the Jaccard index. This highlights the complexity of
our communities and the role of social structures in shaping
infectious disease dynamics, indicating that it requires multiple
social structures to understand community transmission dynamics
better. The highest similarity in detected types was observed
between the KCH and school setting, followed by KCH and HDSS
and, ultimately, KCH and households. One possible explanation for
the similarity between the KCH and school settings is the similar
age groups of the study participants: the sampled students were
3–19 years old (median 7 years), which resembles the pediatric
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cohort sampled at KCH (<60 months), suggesting a similar
immune profile shaped by age.
Some geographically close locations, e.g., counties in Western

Kenya, showed similar epidemic curves, indicating inter-county
mixing and transmission amongst geographically co-located
counties. Besides, infections from neighboring geographical
regions occasionally fell into a single genetic cluster, suggesting
a single introduction and rapid spread within the community.
While contemporaneous global data were sparse, phylogenetic
analysis showed that observed local RV infections were a result of
both local transmission and virus importations. Perhaps due to
limited contemporaneous global data, temporal clustering of
global and local sequences was only observed between viruses
from the school study and Europe (RV type A2). Transmission links
across different continents suggest a potential role of human
movement in influencing rhinovirus infections. We acknowledge
that tree topologies are only a representation of a complex set of
models and the viral sequence data and may not always
accurately capture reality. Nevertheless, similar to our analysis,
Kenya-Europe and Kenya-Asia were the most common transmis-
sion pathways previously noted by a study focusing on respiratory
syncytial virus48. Europe is the leading source of tourists to
Kenya49, and the recent increasing Chinese economic interest in
Africa50 has resulted in increased human traffic between China
and Africa, including Kenya.
This study also tested the hypothesis that multiple waves of a

given type in the same location should be differentiable as
genetically different. We made three observations. (i) The majority
of type-specific waves at an administrative location or county level
were caused by a single genetic variant of an RV type, suggesting
a single introduction into the local population. (ii) We found
evidence that subsequent waves of the same RV type are
occasionally composed of new genetic variants but failed to
reject the null hypothesis that type-specific waves deplete the
susceptible population in a location. This may be due to slow
sustained transmission that was not detected under our study
design, or an influx of susceptible individuals from outside of the
location. (iii) New genetic variants in the population were
potentially a result of new introductions or in situ evolution;
whether the new variants hold a fitness advantage is yet to be
confirmed.
This analysis had some limitations. First, discrepancies in the

individual study designs and differences in study periods across
the different social structures made comparisons difficult. Second,
the VP4/2 region is relatively short, which may result in a high
statistical uncertainty when inferring transmission, as previously
demonstrated51. Third, our approach to investigating global
transmission dynamics of frequent RV types in Kenya was
centered on publicly available sequence data. Although we
included all available data for the analysed RV types, regions
without sequence coverage were omitted from the global picture.
This study refines our understanding of how RV molecular

diversity compares across different social structures, reinforcing
the role of social structures in shaping infectious disease
dynamics. We demonstrate that at large geographical spaces
(county and country), rhinovirus is endemic, and infections are
caused by highly diverse viruses. In addition, rhinovirus epidemics
or waves are driven by multiple variants of RV types. This
improved understanding can act as an indicator for comprehend-
ing the dynamics of other less frequent or potentially more severe
respiratory viruses. Future studies should include whole-genome
analysis to refine understanding on RV transmission and evolu-
tionary dynamics at the various social structure levels.
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