12,348 research outputs found

    Application of dielectric constant measurements to radar imagery interpretation

    Get PDF
    The author has identified the following significant results. Although it is readily recognized that there is a need for ground truth to provide adequate guidance for remote sensing data interpretation, it is noted that, in terms of radar remote sensing, this ground truth is often inadequate. It is necessary to make basic electrical and physical measurements of the surface and to some depth below it. A brief outline is presented of a ground truth scheme which uses measurements of the dielectric constant. Two portable instruments were designed specifically for this purpose; these were: (1) a Q-meter for measurement of dielectric constant and loss tangent; and (2) an instrument to measure electrical properties of the two operating frequencies of the imaging radar. Although extensive data are lacking, several general cases of radar-earth surface and interaction are described; also, examples of radar imagery and some data on ice and snow are presented. It is concluded that the next logical step is to begin to quantify the radar ground truth in preparation for machine interpretation and automatic data processing of the radar imagery

    The X-ray surface brightness distribution from diffuse gas

    Full text link
    We use simulations to predict the X-ray surface brightness distribution arising from hot, cosmologically distributed diffuse gas. The distribution is computed for two bands: 0.5-2 keV and 0.1-0.4 keV, using a cosmological-constant dominated cosmology that fits many other observations. We examine a number of numerical issues such as resolution, simulation volume and pixel size and show that the predicted mean background is sensitive to resolution such that higher resolution systematically increases the mean predicted background. Although this means that we can compute only lower bounds to the predicted level, these bounds are already quite restrictive. Since the observed extra-galactic X-ray background is mostly accounted for by compact sources, the amount of the observed background attributable to diffuse gas is tightly constrained. We show that without physical processes in addition to those included in the simulations (such as radiative cooling or non-gravitational heating), both bands exceed observational limits. In order to examine the effect of non-gravitational heating we explore a simple modeling of energy injection and show that substantial amounts of heating are required (i.e. 5 keV per particle when averaged over all baryons). Finally, we also compute the distribution of surface brightness on the sky and show that it has a well-resolved characteristic shape. This shape is substantially modified by non-gravitational heating and can be used as a probe of such energy injection.Comment: 11 pages, 11 figures, submitted to Ap

    Collider Signatures of SuperWIMP Warm Dark Matter

    Full text link
    SuperWeakly-Interacting Massive Particles (superWIMPs) produced in the late decays of other particles are well-motivated dark matter candidates and may be favored over standard Weakly-Interacting Massive Particles (WIMPs) by small scale structure observations. Among the most promising frameworks that incorporate superWIMPs are R-parity conserving supersymmetry models in which the lightest supersymmetric particle (LSP) is the gravitino or the axino. In these well-defined particle models, astrophysical observations have direct implications for possible measurements at future colliders.Comment: Contributed to the 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 2005. 3 pages, LaTeX, 1 figur

    Generation and measurement of nonstationary random processes technical note no. 3

    Get PDF
    Generation and measurement of nonstationary stochastic processes related to Monte Carlo studies with analog compute

    Edge-weighting of gene expression graphs

    Get PDF
    In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed

    Simulating Star Formation and Feedback in Galactic Disk Models

    Full text link
    We use a high-resolution grid-based hydrodynamics method to simulate the multi-phase interstellar medium in a Milky Way-size quiescent disk galaxy. The models are global and three-dimensional, and include a treatment of star formation and feedback. We examine the formation of gravitational instabilities and show that a form of the Toomre instability criterion can successfully predict where star formation will occur. Two common prescriptions for star formation are investigated. The first is based on cosmological simulations and has a relatively low threshold for star formation, but also enforces a comparatively low efficiency. The second only permits star formation above a number density of 1000 cm^-3 but adopts a high efficiency. We show that both methods can reproduce the observed slope of the relationship between star formation and gas surface density (although at too high a rate for our adopted parameters). A run which includes feedback from type II supernovae is successful at driving gas out of the plane, most of which falls back onto the disk. This feedback also substantially reduces the star formation rate. Finally, we examine the density and pressure distribution of the ISM, and show that there is a rough pressure equilibrium in the disk, but with a wide range of pressures at a given location (and even wider for the case including feedbackComment: 14 pages, 12 figures, accepted to Astrophysical Journa

    Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    Get PDF
    Geimplanted with 1MeV Si⁺ at a dose of 1×10¹⁵cm⁻² creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation Contract No. 00057787
    corecore