16 research outputs found

    Mechanistic studies of the agmatine deiminase from Listeria monocytogenes

    No full text
    Listeria monocytogenes is a Gram-positive food-borne pathogen that is capable of living within extreme environments (i.e. low temperatures and pH). This ability to survive in such conditions may arise, at least in part, from agmatine catabolism via the agmatine deiminase system (AgDS). This catabolic pathway utilizes an agmatine deiminase (AgD) to hydrolyse agmatine into N-carbamoylputrescine (NCP), with concomitant release of ammonia, which increases the pH, thus mitigating the ill effects of the acidic environment. Given the potential significance of this pathway for cell survival, we set out to study the catalytic mechanism of the AgD encoded by L. monocytogenes. In the present paper, we describe the catalytic mechanism employed by this enzyme based on pH profiles, pKa measurements of the active site cysteine and solvent isotope effects (SIE). In addition, we report inhibition of this enzyme by two novel AgD inhibitors, i.e. N-(4-aminobutyl)-2-fluoro-ethanimidamide (ABFA) and N-(4-aminobutyl)-2-chloro-ethanimidamide (ABCA). In contrast with other orthologues, L. monocytogenes AgD does not use the reverse protonation or substrate-assisted mechanism, which requires an active site cysteine with a high pKa and has been commonly seen in other members of the guanidinium-modifying enzyme (GME) superfamily. Instead, the L. monocytogenes AgD has a low pKa cysteine in the active site leading to an alternative mechanism of catalysis. This is the first time that this mechanism has been observed in the GME superfamily and is significant because it explains why previously developed mechanism-based inactivators of AgDs are ineffective against this orthologue

    Galantamine Facilitates Acquisition of a Trace-Conditioned Eyeblink Response in Healthy, Young Rabbits

    No full text
    Previous work has demonstrated that drugs increasing brain concentrations of acetylcholine can enhance cognition in aging and brain-damaged organisms. The present study assessed whether galantamine (GAL), an allosteric modulator of nicotinic cholinergic receptors and weak acetylcholinesterase inhibitor, could improve acquisition and retention of an eyeblink (EB) classical conditioningtask in healthy, younganimals. We trained 24 rabbits (n = 8/group) in a 1000-msec trace Pavlovian EB conditioningparadigm in which a tone conditioned stimulus (CS) was presented for 500 msec, followed by a 500-msec trace period in which no stimuli were presented. A 100-msec corneal airpuff was the unconditioned stimulus (US). Acquisition sessions, consistingof 100 trials each, occurred daily for 10 consecutive days, followed by 3 d of extinction training. Animals were treated with one of three doses of GAL (0.0–3.0 mg/kg) prior to each session. Animals that received 3.0 mg/kg GAL showed significantly more EB conditioned responses (CRs) in fewer trainingtrials than animals receivingeither 1.5 mg/kg GAL or vehicle injections. GAL had no effect on CR performance duringextinction. Pseudoconditioningcontrol experiments, consistingof 200 explicitly unpaired tone–puff presentations indicated that GAL did not increase reactivity to the CS or US. These findings indicate that GAL may improve acquisition of moderately difficult associative learningtasks in healthy young organisms

    Mechanistic studies of the agmatine deiminase from Listeria monocytogenes

    No full text
    Listeria monocytogenes is a Gram-positive food-borne pathogen that is capable of living within extreme environments (i.e. low temperatures and pH). This ability to survive in such conditions may arise, at least in part, from agmatine catabolism via the agmatine deiminase system (AgDS). This catabolic pathway utilizes an agmatine deiminase (AgD) to hydrolyse agmatine into N-carbamoylputrescine (NCP), with concomitant release of ammonia, which increases the pH, thus mitigating the ill effects of the acidic environment. Given the potential significance of this pathway for cell survival, we set out to study the catalytic mechanism of the AgD encoded by L. monocytogenes. In the present paper, we describe the catalytic mechanism employed by this enzyme based on pH profiles, pK(a) measurements of the active site cysteine and solvent isotope effects (SIE). In addition, we report inhibition of this enzyme by two novel AgD inhibitors, i.e. N-(4-aminobutyl)-2-fluoro-ethanimidamide (ABFA) and N-(4-aminobutyl)-2-chloro-ethanimidamide (ABCA). In contrast with other orthologues, L. monocytogenes AgD does not use the reverse protonation or substrate-assisted mechanism, which requires an active site cysteine with a high pK(a) and has been commonly seen in other members of the guanidinium-modifying enzyme (GME) superfamily. Instead, the L. monocytogenes AgD has a low pK(a) cysteine in the active site leading to an alternative mechanism of catalysis. This is the first time that this mechanism has been observed in the GME superfamily and is significant because it explains why previously developed mechanism-based inactivators of AgDs are ineffective against this orthologue

    The development and characterization of a chemical probe targeting PRMT1 over PRMT5

    No full text
    Protein arginine methyltransferases (PRMTs) are a family of mammalian enzymes catalyzing the symmetric dimethylation (Type I), asymmetric dimethylation (Type II), or monomethylation (Type III) of arginine residues within proteins. This family is composed of 11 isozymes, however the vast majority of asymmetric and symmetric dimethylation in mammals is completed by either PRMT1 or PRMT5, respectively. In recent years, a number of chemical probes targeting this family of enzymes have been developed, but the majority of these probes lack isozyme specificity. Herein, we report the development of a chemical probe, based on a non-natural peptide sequence, which specifically labels PRMT1 over PRMT5 with high selectivity and sensitivity

    Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1)

    No full text
    Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes

    A fluopol-ABPP HTS assay to identify PAD inhibitors

    No full text
    Protein Arginine Deiminase (PAD) activity is dysregulated in numerous diseases, e.g., Rheumatoid Arthritis. Herein we describe the development of a fluorescence polarization-Activity Based Protein Profiling (fluopol-ABPP) based high throughput screening assay that can be used to identify PAD-selective inhibitors. Using this assay, streptonigrin was identified as a potent, selective, and irreversible PAD4 inactivator

    Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product

    No full text
    Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the <i>Nocardiopsis</i> sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from <i>E. coli</i> expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze <i>cyclo</i>(l-Trp-l-Trp) (<b>1</b>) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, <b>1</b> was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that <i>Nocardiopsis</i> sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines

    Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product

    No full text
    Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the <i>Nocardiopsis</i> sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from <i>E. coli</i> expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze <i>cyclo</i>(l-Trp-l-Trp) (<b>1</b>) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, <b>1</b> was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that <i>Nocardiopsis</i> sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines

    Felty\u27s syndrome autoantibodies bind to deiminated histones and neutrophil extracellular chromatin traps.

    No full text
    OBJECTIVE: To test the hypothesis that autoantigen modifications by peptidylarginine deiminase type 4 (PAD-4) increase immunoreactivity. METHODS: We assembled sera from patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Felty\u27s syndrome (FS), and antineutrophil cytoplasmic antibody-associated vasculitides (AAVs), as well as sera from control subjects without autoimmune diseases. The sera were tested for binding to activated neutrophils, deiminated histones, and neutrophil extracellular chromatin traps (NETs). IgG binding to lipopolysaccharide-activated neutrophils was assessed with confocal microscopy, and binding to in vitro-deiminated histones was measured using enzyme-linked immunosorbent assay (ELISA) and Western blotting. In addition, we quantitated histone deimination in freshly isolated neutrophils from the blood of patients and control subjects. RESULTS: Increased IgG reactivity with activated neutrophils, particularly binding to NETs, was paralleled by preferential binding to deiminated histones over nondeiminated histones by ELISA in a majority of sera from FS patients but only in a minority of sera from SLE and RA patients. Immunoblotting revealed autoantibody preference for deiminated histones H3, H4, and H2A in most FS patients and in a subset of SLE and RA patients. In patients with AAVs, serum IgG preferentially bound nondeiminated histones over deiminated histones. Increased levels of deiminated histones were detected in neutrophils from RA patients. CONCLUSION: Circulating autoantibodies in FS are preferentially directed against PAD-4-deiminated histones and bind to activated neutrophils and NETs. Thus, increased reactivity with modified autoantigens in FS implies a direct contribution of neutrophil activation and the production of NET-associated nuclear autoantigens in the initiation or progression of FS
    corecore