24 research outputs found

    Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections

    Get PDF
    Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics and nowadays, a common infection can be fatal. To revert this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since P. aeruginosa is one of the most common causes of healthcare-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review will further address the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.D.P.P. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) (grant SFRH/BD/76440/2011). S.S. is an FCT investigator (IF/01413/2013).The authors also thank FCT for the Strategic Project of the UID/BIO/04469/2013 unit, FCT and the European Union (FEDER/COMPETE) for funds for the RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) project, and the “BioHealth-Biotechnology and Bioengineering approaches to improve health quality” (NORTE-07-0124-FEDER-000027) project, cofunded by the Programa Operac

    Genetically Engineered Phages: a Review of Advances over the Last Decade

    Get PDF
    Summary: Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work.D.P.P. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) through grant SFRH/BD/76440/2011. This work was funded by The Center for Microbiome Informatics and Therapeutics and NSF Expeditions in Computing Program award #1522074 as part of the Living Computing Project. This work was further supported by grants from the Defense Threat Reduction Agency (grants HDTRA1-14-1-0007 and HDTRA1-15-1-0050), the National Institutes of Health (grants 1DP2OD008435,1P50GM098792,1R01EB017755, and 1R21AI12166901), and the U.S. Army Research Laboratory and U.S. Army Research Office, through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001.S.S.is an FCT investigator (IF/01413/2013). D.P.P., S.S., and J.A. also acknowledge financial support from FCT under the scope of the strategic funding of the UID/ BIO/04469/2013 unit and COMPETE 2020 (grant POCI-01-0145FEDER-006684). T.K.L. is a founder of Sample6 Inc. and Eligo Biosciences, two companies developing phage-based technologies
    corecore