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SUMMARY

Soon after their discovery in the early 20th century, bacteriophages were
recognized to have great potential as antimicrobial agents, a potential that
has yet to be fully realized. The nascent field of phage therapy was ad-
versely affected by inadequately controlled trials and the discovery of an-
tibiotics. Although the study of phages as anti-infective agents slowed,
phages played an important role in the development of molecular biol-
ogy. In recent years, the increase in multidrug-resistant bacteria has re-
newed interest in the use of phages as antimicrobial agents. With the wide
array of possibilities offered by genetic engineering, these bacterial viruses
are being modified to precisely control and detect bacteria and to serve as
new sources of antibacterials. In applications that go beyond their anti-
microbial activity, phages are also being developed as vehicles for drug
delivery and vaccines, as well as for the assembly of new materials. This
review highlights advances in techniques used to engineer phages for all
of these purposes and discusses existing challenges and opportunities for
future work.

INTRODUCTION

Bacteriophages (phages) are among the most abundant biolog-
ical particles on earth. They are also highly versatile and adapt-
able to a great number of applications. Phages are viruses that
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infect bacteria; their self-replication depends on access to a bacte-
rial host. Phages were discovered independently by Frederick
Twortin 1915 (1) and by Félix d'Hérelle in 1917 (2), and they were
used early on as antimicrobial agents. Although the initial results
of phage therapy were promising (3, 4), poorly controlled trials
and inconsistent results generated controversy within the scien-
tific community about the efficacy and reproducibility of using
phages to treat bacterial infections (5-7). The discovery of peni-
cillin in 1928 and the subsequent arrival of the antibiotic era fur-
ther cast a shadow on phage therapy (5, 6). As a result, phage
therapy was discontinued in Western countries, even as its use
continued in Eastern Europe and the former Soviet Union (8-10).

Despite the important success of antibiotics in improving hu-
man health, antibiotic resistance has emerged with steadily in-
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FIG 1 Phage engineering via homologous recombination. Upon phage infection (A), the injected DNA recombines with plasmid DNA carrying regions of
homology (loci in red) to the phage genome (B), resulting in new, recombinant phage particles (fragments in orange) (C).

creasing frequency, rendering many antibiotics ineffective (11—
14). Multidrug-resistant bacteria currently constitute one of the
most widespread global public health concerns (15-17). More
than 2 million people are sickened every year in the United States
alone as a result of antibiotic-resistant infections, resulting in at
least 23,000 deaths per year (16). The rising tide of antibiotic re-
sistance coupled with the low rate of antibiotic discovery (17, 18)
has revived interest in phages as antibacterial agents (19-21).
Unlike most antibiotics, phages are typically highly specific for
a particular set of bacterial species or strains and are thus expected
to have fewer off-target effects on commensal microflora than
antibiotics do (22). The self-replicating nature of phages and the
availability of simple, rapid, and low-cost phage production pro-
cesses are additional advantages for their use as antimicrobials
(22). Phages have been used not only to treat and prevent human
bacterial infections (9, 23-25) but also to control plant diseases
(26-29), detect pathogens (30-33), and assess food safety (34-37).
Notwithstanding their antimicrobial potential, some major
concerns remain about the use of phages in clinical medicine. The
specificity of phages means that they can target bacterial strains
precisely; however, because a single phage type is unlikely to target
all strains within a given species, cocktails combining various
phages are often necessary to be broadly applicable for treating the
wide range of bacteria that can cause clinical infections. Obtaining
regulatory approval for the therapeutic applications of such cock-
tails can be challenging because of the significant diversity of
phages in terms of structure, life cycle, and genome organization
(22, 38). Like certain antibiotics, phages can cause rapid and mas-
sive bacterial lysis and the subsequent release of cell wall compo-
nents (e.g., lipopolysaccharides [LPS]), which can induce adverse
immune responses in the human host (39, 40). Bacteria frequently
live in biofilm communities surrounded by extracellular poly-
meric substances (EPS), which can act as a barrier to phage pene-
tration (41). Furthermore, as bacteria evolve, they can develop
resistance mechanisms to avoid phage infection (38, 42, 43). By
genetically engineering phages, it may be possible to overcome
many of these limitations (44). The engineering of specific phages
and components has been facilitated by the ever-growing abun-
dance of fully sequenced phage genomes in public databases (45,
46) and by research into elucidating the structures of phage com-
ponents (47-51) and the interactions between phages and their
host bacteria (52—54). This review focuses on advances made in
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phage engineering techniques and applications in the past decade.
Specifically, we discuss the use of phages in pathogen control and
detection, as well as their broader application in other research
areas, including targeted drug delivery and materials engineering.

TECHNIQUES FOR ENGINEERING SYNTHETIC PHAGES

Homologous Recombination

One of the most commonly used and well-established methods for
engineering phage genomes is homologous recombination in
their bacterial hosts, which can occur between two homologous
DNA sequences as short as 23 bp (55, 56). Homologous recombi-
nation is a naturally occurring phenomenon. It enables cells to
recombine heterologous DNA introduced into cells with their
own genomic DNA when both sequences share regions of homol-
ogy (57, 58). This mechanism can also be co-opted to incorporate
foreign genes into a phage genome (Fig. 1). The generation of gene
insertions, replacements, or deletions by homologous recombina-
tion with phage DNA follows principles similar to those that apply
to the bacterial counterparts. As with all of the phage genetic en-
gineering techniques described below, phage genome sequencing
is important for the successful design of constructs to modify the
phages. In brief, the gene to be introduced into the phage genome,
flanked by two regions of homology with the phage genome, is
first cloned into a replicative plasmid. The homologous regions
determine where in the phage genome the foreign gene will be
incorporated (59). The bacterial host harboring the donor plas-
mid is then infected by the phage to be engineered. Homologous
recombination occurs between the plasmid and the phage ge-
nome, allowing the heterologous gene to be integrated into the
phage genome and eventually packaged within the phage particle
(59, 60). However, often only a small fraction of the progeny
phage will be recombinant. Reported recombination rates range
from 107 '° to 10~* (59-61), though this frequency can be higher
and may depend on the phage and the genes being manipulated.
Without an efficient phage screening method, finding the desired
clone is labor-intensive at best. Therefore, a reporter gene, usually
encoding luciferase or a fluorescent protein, is commonly cloned
along with the gene of interest to facilitate the identification of
mutant phages by detecting the reporter (59, 62—65). Because the
recombination rates obtained with this technique are low, it is
improbable that targeting multiple loci at the same time will result
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FIG 2 Bacteriophage recombineering of electroporated DNA. Purified phage DNA (A) and dsDNA recombineering substrates (B) are coelectroporated into cells
(C). Recombination between their homologous regions (in orange) (D) results in recombinant phage particles (containing DNA fragments in green) (E).

in an organism carrying all the desired mutations. Thus, when the
aim is to obtain multiple mutations, each mutation is often made
independently in a sequential fashion, which is a time-consuming
process.

Bacteriophage Recombineering of Electroporated DNA

Another frequently used strategy for the engineering of phage ge-
nomes is bacteriophage recombineering of electroporated DNA
(BRED) (Fig. 2) (63, 66). This technique was first applied by
Marinelli et al. to modify mycobacteriophages (66) and has since
been expanded to modify phages that target bacterial hosts other
than mycobacteria for which recombineering systems are avail-
able, such as Escherichia coli and Salmonella enterica (67, 68).
BRED can be used to delete, insert, and replace genes, as well as to
create point mutations in phage genomes. It consists of coelectro-
porating the recombineering substrates, i.e., phage DNA and dou-
ble-stranded DNA (dsDNA), into electrocompetent bacterial cells
carrying a plasmid that encodes proteins promoting high levels of
homologous recombination, such as the RecE/RecT-like proteins
(63, 66). The dsDNA substrate comprises the DNA fragment to be
inserted along with regions of homology to the loci immediately
up- and downstream of the region of the phage genome to be
modified (66, 69). After electroporation, the bacterial cells are
recovered, mixed with the wild-type bacterial host, and plated.
The plates are then checked for the presence of phage plaques.
Individual plaques, indicative of bacterial cell lysis, are then
screened by PCR for the correctly mutated phage genome (66). By
using this method, modified phages have been obtained at high
frequencies (10 to 15%), thus enabling putative mutants to be
screened by a small number of PCRs, without the requirement for
further selection (66). This technique requires highly competent
bacterial hosts.

In Vivo Recombineering

The in vivo recombineering method uses phage \ as a tool for the
engineering of other, less well-studied E. coli phages (Fig. 3) (70).
Briefly, E. coli cells carrying a defective N prophage and the pL
operon are infected with the phage to be engineered at a multiplic-
ity of infection (MOI) of 1 to 3 and allowed to adsorb for 15 min.
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The pL operon, which is involved in general and site-specific re-
combination (71), is under the control of a temperature-sensitive
repressor. Following phage infection, the N Red recombination
functions are induced by heating the mid-log-phase bacterial cul-
ture to 42°C. At this point, the cells are electroporated with the
dsDNA or single-stranded DNA (ssDNA) substrate (69, 70). The
phage lysate is subsequently recovered and checked for incorpo-
ration of the desired DNA (70). The yield of recombinant phages
obtained by using this technique is about 0.5 to 2%, which is
higher than the yield obtained by homologous recombination but
still low, so screening for the mutant phages remains challenging
(63, 66, 70). This technique can potentially be adapted to other
phages and other bacterial species by introducing the A Red system
via plasmids (without the rest of the X phage), or another recom-
bination machinery, into host bacteria that can be targeted by the
phage to be engineered.

CRISPR-Cas-Mediated Genome Engineering

Clustered regularly interspaced short palindromic repeats
(CRISPR) in combination with cas (CRISPR-associated) genes
form an “adaptive” immune system in bacteria and archaea, pro-
tecting microbial cells from invading foreign DNA, such as DNA
delivered by invading phage genomes (72, 73). The CRISPR-Cas
systems consist of two main components: the Cas proteins, which
work as the catalytic core of the system and are responsible for
cleaving DNA, and the CRISPR locus, which functions as the ge-
netic memory that directs catalytic activity against foreign DNA
(74). CRISPR loci are typically composed of several noncontigu-
ous direct repeats separated by short stretches of variable DNA
sequences, called spacers, acquired from extrachromosomal ele-
ments (72,75, 76). CRISPR-Cas systems are currently divided into
three major types (I, I, and III) characterized by distinct sets of cas
genes, with a further division into several subtypes (77, 78). The
mode of action of CRISPR-Cas systems comprises three main pro-
cesses, namely, CRISPR adaptation, RNA biogenesis, and
CRISPR-Cas interference, which are further reviewed by Westra et
al. (74) and Makarova et al. (77).

Recently, Kiro et al. described a method to enhance the engi-
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FIG 3 Invivo recombineering. Bacterial cells carrying a defective N prophage and the pL operon under the control of a temperature-sensitive repressor (inred) (A) are
infected with the phage to be manipulated (B) and subsequently transformed with dsDNA or ssDNA (C). Recombination then occurs between the phage genome
and the dsDNA/ssDNA (homologous loci in blue) (D), after which recombinant phage particles (carrying the DNA fragments in pink) are recovered (E).

neering of the T7 phage genome by using the type I-E CRISPR-Cas
system (Fig. 4) (79). Homologous recombination was first used to
delete a nonessential T7 gene (gene 1.7). Specifically, the T7 phage
was propagated in a bacterial host harboring a plasmid carrying
regions of homology to the upstream and downstream regions of
the phage gene 1.7, such that recombination would delete this
gene. The phage population resulting from this reaction con-
tained recombinant phages lacking gene 1.7 as well as nonrecom-
binant wild-type phages. In order to enrich for the desired recom-
binant phages, a CRISPR-based counterselection system was used
(79). The recombinant phage lysate was plated on host bacteria
carrying 3 plasmids encoding the components required for
CRISPR-Cas activity: the targeting cascade complex, the cas3 deg-
radation machinery, and the CRISPR spacer targeting gene 1.7.
The result was selective cleavage of the nonrecombinant phage
genomes, which contained gene 1.7, but not of the recombinant
phage genomes, which lacked gene 1.7, thus inhibiting replication
of the former phages and enriching for the latter phages. This

method thus overcomes the issue of having to fish out a very small
percentage of recombinant phages from a large pool of wild-type
phages (79). Similarly, the Streptococcus thermophilus type 1I-A
CRISPR-Cas system has been used to select for Streptococcus
phage 2972 recombinants that have undergone point mutations,
small and large DNA deletions, and gene replacements (80). It
remains to be seen how generalizable this technology will be to
other phage families and bacterial species.

Rebuilding/Refactoring Phage Genomes In Vitro

Phage genomes can be manipulated and edited in vitro before they
are introduced into their bacterial hosts. For example, in 2005,
Chan et al. redesigned the genome of T7 phage by eliminating
overlaps between genetic segments in a process known as refac-
toring (Fig. 5) (81). These segments, of which there were 73, were
grouped into 6 sections. Bracketing restriction sites were added to
the DNA sequence of each section so that the DNA could be al-
tered within each section without affecting the other sections. Al-

FIG 4 CRISPR-Cas-mediated phage engineering. Upon phage infection, homologous recombination occurs between phage DNA (A) and plasmid DNA (B),
such that a phage gene (in orange) is deleted. The resulting phage population is mixed (phages containing fragments in blue or orange) (C), but by using the
CRISPR-Cas system (single guide RNA [sgRNA] is shown in orange and Cas proteins in red and yellow, encoded on separate plasmids) to target the gene
retained in the wild-type particles (D), it is possible to counterselect the wild-type phage population (fragment in orange in genome) (E) and to retain the

recombinant version (phage containing the blue-colored fragment) (F).
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FIG 5 Rebuilding/refactoring of phage genomes in vitro. Once the phage DNA
has been purified (A), it is digested using native restriction sites (B), and inde-
pendent pieces (in burgundy) (C) can be subcloned and further manipulated
(represented by the DNA fragments in burgundy, blue, and pink) (D). Once
released from the vector, the recombinant section is ligated to the rest of the
phage genome (E) and electroporated into the phage host for recovery of
engineered phage particles (F).

tered genomes were then assembled in vitro from these sections by
molecular cloning. Chan et al. built three chimeric T7 phage ge-
nomes made up of different engineered sections and then gener-
ated viable phages out of these refactored genomes by transform-
ing the bacterial host with the engineered phage genomes.
However, many of the recombinant phages produced consider-

Genetically Engineered Phages

ably smaller plaques than the wild-type phage, suggesting that
fitness was adversely affected by these efforts (81). Bottlenecks
associated with this engineering approach include the difficulty of
working with large DNA fragments in vitro and the need to trans-
form bacteria with the engineered genomes in order to recover
viable phages, which can be an inefficient process, especially for
nondomesticated bacteria.

Whole-Genome Synthesis and Assembly from Synthetic
Oligonucleotides

Complete phage genomes can also be assembled from synthetic
oligonucleotides in vitro. The entire genome of phage ®X174
(5,386 bp) has been assembled in this manner (Fig. 6) (82, 83).
The synthesized oligonucleotides were gel purified, phosphory-
lated, annealed, and assembled in vitro by polymerase cycling as-
sembly (PCA). The full-length genome was amplified by PCR,
digested with a restriction enzyme, gel purified, and circularized
by ligation (phage ®X174 has a closed circular genome). The as-
sembled ®X174 genome was then electroporated into E. coli, fol-
lowed by plating to check for phage plaques. The synthetic phage
DNA showed a lower infectivity than that of the natural phage
DNA, a difference that was attributed to PCR-generated muta-
tions (1 per 500 bp) introduced by this method (83). Nonetheless,
viable phages were recovered. This approach is likely to be limited
to relatively small phage genomes owing to the challenges of ma-
nipulating large DNA molecules in vitro and the potential intro-
duction of mutations via the PCR-based process. However, in
vitro DNA synthesis and assembly enable arbitrary genetic altera-
tions to be introduced into phage genomes more easily than the
case with recombineering-based approaches (83).

Yeast-Based Assembly of Phage Genomes

Propagating phage genomes in a bacterial host can be toxic for the
host, thus limiting the efficiency of phage genome engineering
with methods such as homologous recombination, BRED, and in
vivo recombineering. This issue can be overcome by using Saccha-
romyces cerevisiae rather than bacteria as an intermediate host for
genetic manipulation. Homologous recombination is particularly
efficient in S. cerevisiae, and phage genomes do not cause toxicity

FIG 6 Synthesis and assembly of phage genomes from synthetic oligonucleotides. Synthetic oligonucleotides (A) are annealed and assembled by PCA, followed
by ligation (B). E. coli is subsequently transformed with the full circular genome molecules (C), and phage particles are recovered (D).
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FIG 7 Yeast-based assembly of phage genomes. Purified phage DNA (A) is electroporated into S. cerevisiae together with linear YAC molecules with overhangs
(in black) homologous to the 5" and 3’ ends of the linear phage genome (B). Recombination in the yeast cell enables genomic subcloning (YAC backbone in
green) (C), which upon YAC purification and electroporation (D) allows the recovery of phage particles (E).

in yeast and can be maintained stably (Fig. 7) (84). With this
method, the phage genome is captured in an S. cerevisiae-bacterial
shuttle vector. The main requirement is that the shuttle vector
must contain overhangs homologous to the ends of the phage
genome so that the vector and the phage genome can join via
recombination. Phage genomes assembled, modified, and propa-
gated in yeast have been isolated and introduced into bacteria to
generate functional phage particles (84). This technique has been
used to capture and genetically modify the genomes of the co-
liphages T3 (38,208 bp) and T7 (39,937 bp) (84, 85) as well as the
Klebsiella phage K11 (41,181 bp) (85). It was further used to cap-
ture and archive the genome of fully refactored phage ®X174
(6,302 bp) (86). This strategy requires the extraction of the phage
genome from yeast and its introduction into bacteria, and thus its
efficiency is restricted by bacterial transformation efficiencies.

Cell-Free Transcription-Translation Systems

One of the major advantages of using in vitro or yeast-based ge-
nome modification is that phage genomes can be engineered with-
out causing toxicity to the host. To create functional phage parti-
cles from phage genomes modified in vitro or in yeast, researchers
have generally relied on transformation as the means of getting
phage genomic DNA back into the host bacterium, where phage
particles are then “booted up” (i.e., viable phage particles are pro-
duced from the genomic DNA). However, this process requires
high transformation efficiencies, especially for large phage ge-
nomes. While highly efficient transformation protocols have been
devised for some bacteria (e.g., E. coli and Pseudomonas aerugi-
nosa), many other bacterial species are extremely difficult to trans-
form. This poses a bottleneck in the throughput and efficiency of
in vitro and yeast-based systems for phage genetic engineering.
Cell-free transcription-translation systems offer a potential so-
lution to this problem. For example, such systems have been used
to replicate, synthesize, and assemble the T7 phage genome (Fig.
8) (87). In this case, as little as 1 nM phage genomic DNA, com-
bined with a TX-TL cell-free system prepared from E. coli BL21
Rosetta2, resulted in the assembly of approximately 0.1 to 1 billion
infectious T7 phage particles/ml of reaction mixture within a few
hours of incubation. This method has also been used to boot up
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FIG 8 Cell-free systems for assembly of recombinant phage particles. Purified
phage genome DNA is combined with cell-free expression systems (A) that
enable gene transcription (B), translation (C), DNA replication (D), and as-
sembly of whole phage particles (E).
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phage ®X174 to create approximately 1 million particles/ml of
reaction mixture (87). In future work, it will be important to test
this strategy for a wider range of phage genomes to see whether it
is universally applicable.

PHAGE ENGINEERING FOR PATHOGEN CONTROL

Natural Phage-Based Antimicrobials

The potential of natural lytic phages to act as antimicrobial agents
against targets that include multidrug-resistant bacteria has been
studied extensively both in vitro (88-91) and in vivo (92-98). Nat-
ural phages have been used therapeutically since 1919, when
d’Hérelle successfully treated children suffering from severe dys-
entery with phages (9). Other studies were later conducted on the
use of phages in clinical practice, such as for the treatment of
surgical infections and suppurative lesions (3, 99, 100). Even after
the discovery of antibiotics, phage therapy continued to be used in
the former Soviet Union and Eastern Europe (7, 9). Although
many studies have reported on the potential and safety of phage
therapy to treat patients with bacterial infections (23, 92, 94, 101—
104), the widespread use of phages in Western medicine is cur-
rently awaiting approval. In addition to the requirement for reg-
ulatory approval, other obstacles stand in the way of bringing
phages into the clinical setting, including the development of bac-
terial resistance to phages, the narrow host ranges of phages, and
concerns over the immunogenicity of phage therapy (44).

Bacteria can quickly evolve to counter phage infection. Just as
bacterial exposure to antibiotics favors the emergence of antibiot-
ic-resistant bacteria (105, 106), resistance to phages may appear
spontaneously within a few hours post-phage treatment in vitro
(91, 107-109). Bacteria can avoid being infected by phages in sev-
eral ways (42), as follows. (i) Adsorption-blocking mechanisms
prevent phages from binding to cellular receptors on bacterial cell
surfaces. Adsorption can be blocked by the loss or change of bac-
terial phage receptors; by physical barriers, such as the EPS matrix,
which hides phage receptor molecules; or by the production of
molecules that bind to receptors, thus making them inaccessible to
phages. (ii) Bacteria can impede the entry of phage DNA by su-
perinfection exclusion systems. (iii) Bacteria can cleave phage nu-
cleic acids by restriction-modification systems or CRISPR-Cas
systems, which protect bacterial cells from invading foreign DNA.
(iv) Abortive infection systems can lead to host cell death (38, 42).
Phages, in turn, are capable of countering these resistance mech-
anisms, in part because of their genomic plasticity and fast repli-
cation (43). Phage diversity is generated by point mutations, ge-
nome rearrangements, and the exchange of genetic material with
other phage particles or bacteria (43). The ability to engineer,
mutagenize, and screen for new phages in high-throughput fash-
ion may pave the way for the rapid creation of modified phages
that can overcome bacterial resistance mechanisms. This is in con-
trast to chemical antimicrobials, for which it can be difficult to
discover novel agents that can be applied against bacteria that have
evolved antibiotic resistance.

There are indications that medical applications of phage-based
products may be gaining greater acceptance. PhagoBurn, a clinical
trial funded by the European Commission, aims to evaluate the
efficacy of a topical application of a well-defined phage cocktail for
the treatment of E. coli and P. aeruginosa infections in burn pa-
tients (110). PhagoBurn is setting a precedent for future therapies
that may one day involve engineered phages. Although the initial
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small trial (9 patients) did not allow for an adequate evaluation of
the efficacy of the phage cocktail used for treatment, no adverse
effects or clinical abnormalities related to its application were ob-
served (110). Similarly, no adverse effects were observed in a safety
study described by Bruttin and Briissow, in which 15 healthy hu-
man volunteers received the E. coli T4 phage orally (103). These
clinical studies have used or are using natural phages, but the
regulatory framework being laid down may help to facilitate fu-
ture clinical development plans for engineered phages.

In addition, a number of studies have also focused on applying
natural phages to agriculture (28, 29), food safety (34, 36, 37), or
veterinary medicine (96, 111, 112). For example, several natural
phage-based products have received regulatory approval for treat-
ing food products. ListShield, EcoShield, and SalmoFresh from
Intralytix control the respective foodborne bacterial pathogens
Listeria monocytogenes, E. coli O157:H7, and S. enterica in foods or
food-processing environments. Salmonelex and Listex P100 from
Micreos reduce contamination with Salmonella and L. monocyto-
genes, respectively, during food processing. AgriPhage from Om-
niLytics controls Xanthomonas campestris and Pseudomonas syrin-
gae on tomato and pepper plants.

Modifying Phages for Enhanced Antibacterial Activity

In addition to having direct antimicrobial activity, phages can be
engineered for use in conjunction with other antimicrobial strat-
egies. For example, phages can be modified to enhance the bacte-
ricidal activity of antibiotics (113). Lu and Collins modified the
lysogenic phage M13mp18 to overexpress lexA3, a repressor of the
SOS DNA repair system, to enhance antibiotic-induced killing of
E. coli (113). The in vitro administration of this lexA3-producing
phage together with a quinolone antibiotic (ofloxacin) signifi-
cantly improved the bactericidal activity against wild-type E. coli
EMG2, by as much as 2.7 (compared with ofloxacin plus wild-type
phage) and 4.5 (compared with ofloxacin alone) orders of magni-
tude. The engineered phage also improved the bactericidal activity
of other antibiotics besides quinolones, such as the aminoglyco-
side gentamicin and the B-lactam ampicillin. Enhanced bacteri-
cidal activity was observed as early as 6 h posttreatment. The en-
gineered phage also increased the antibiotic-based killing of
bacteria that had already acquired resistance to these antibiotics,
as well as the killing of persister and biofilm cells, and it reduced
the emergence of antibiotic-resistant mutants. This strategy was
also effective in an in vivo mouse model, with an 80% survival rate
for E. coli-infected mice that received the engineered phage plus
ofloxacin (versus 50% for treatment with unmodified phage plus
ofloxacin and 20% for treatment with ofloxacin alone) (113).

In another strategy to decrease the development of bacterial
resistance to antibiotics, Edgar et al. engineered temperate phages
to deliver genes encoding sensitivity to antibiotics into bacteria
(114). More precisely, the dominant genes rpsL and gyrA, which
confer sensitivity to streptomycin (an aminoglycoside) and nali-
dixic acid (a quinolone), respectively, were inserted into phage A
by homologous recombination. The authors generated resistant
mutants by exposing E. coli K-12 to these antibiotics. Antibiotic-
resistant strains were then lysogenized with the engineered phages
(carrying rpsL or gyrA), and MICs were evaluated. After lysogeni-
zation with phage, the bacterial susceptibility to both antibiotics
was restored: MICs decreased 8- and 2-fold for bacteria resistant
to streptomycin and nalidixic acid, respectively (114).

In addition to enhancing antibiotic activity, phages are being
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engineered as antimicrobial agents that are more effective than the
corresponding natural phages to fight bacterial infections. Some
bacteria, such as Chlamydia trachomatis, the most common cause
of sexually transmitted infections, are obligate intracellular patho-
gens and therefore are inaccessible to phages added to the extra-
cellular milieu (115, 116). To inhibit C. trachomatis infection, a
phage was engineered to be endocytosed by eukaryotic cells. This
was achieved by engineering the M13 phage to express two func-
tional peptides: an integrin-binding peptide (RGD), expressed on
the p8 major coat protein, and a peptide (PmpD) from a C. tra-
chomatis protein, expressed on the p3 minor coat protein of the
phage (115). RGD induced integrin-mediated endocytosis, which
facilitates internalization into eukaryotic cells. On the other hand,
the PmpD peptide interrupted C. trachomatis infection and prop-
agation. The engineered phage was used to pretreat HeLa and
primary endocervical cells or was added simultaneously with the
bacterium. Fluorescence microscopy and measurement of inclu-
sion-forming units showed a significant inhibition of C. tracho-
matis infection in both cell lines, although the effect of the phage
was more pronounced when it was applied at the same time as the
bacterium in primary endocervical cells (115).

Westwater et al. described the use of engineered phages as le-
thal-agent delivery systems (117). The lethal genes gef and chpBK
were amplified from E. coli XL1-Blue MRF’ and cloned under the
control of a Lacl/IPTG (isopropyl-B-p-thiogalactopyranoside)-
regulated promoter into a vector containing the intergenic region
of phage f1. E. coli cells carrying this phagemid were then infected
with the M13 helper phage R408, allowing for the preferential
packaging of phagemid DNA over helper phage DNA: 95% of the
resulting lysates comprised lethal-agent phagemid particles. The
lysates were then used to infect E. coli cells, which were incubated
in the presence of IPTG. After overnight incubation, viable cell
counts were reduced 948-fold by the Gef-expressing phagemid
and 1,579-fold by the ChpBK-expressing phagemid (117). The
phagemids delivering the lethal agents also reduced bacterial titers
in mice more than 90% 5 h after intraperitoneal injection (117).

Biofilms, which are commonly associated with persistent and
chronic bacterial infections, are structured microbial communi-
ties with reduced metabolic activity, especially in the inner layers.
Biofilms can be less susceptible than planktonic bacteria to anti-
microbial agents, including phages and antibiotics (118). This ef-
fect is often attributed to biofilm matrices, which can limit the
diffusion of molecules and particles, or to slowed bacterial me-
tabolism (41, 119, 120). To overcome the reduced efficacy of
phages against biofilms, Lu and Collins engineered a T7 phage
to express the biofilm-degrading enzyme dispersin B (DspB)
during phage infection (121). Specifically, the dspB gene from
Actinobacillus actinomycetemcomitans was cloned downstream of
the T7select415-1 10B capsid gene under the control of the T7 ¢10
promoter. This engineered phage was efficient against E. coli TG1
biofilms, reducing biofilm cell counts by ~4.5 orders of magni-
tude after 24 h of treatment, a reduction that was ~2 orders of
magnitude more than that caused by the wild-type nonenzymatic
phage (121). In future work, this technology could be expanded to
encompass new enzymes that can target the heterogeneous extra-
cellular composition of biofilms to achieve more efficient biofilm
destruction, since biofilms can be made up of many different bac-
teria producing a range of matrix components.

T7 phage has also been engineered to encode an enzyme that
interferes with quorum sensing (122), a bacterial cell-cell commu-
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nication process involved in biofilm formation (123, 124). This
engineered phage (T7aiiA) was built by cloning the acyl-homoser-
ine lactonase (AHL-lactonase) gene aiiA from Bacillus anthracis
into the T7select415-1 phage vector (121, 122). This quorum-
quenching enzyme inactivates acyl-homoserine lactone (AHL), a
quorum-sensing molecule, by hydrolyzing its lactone bonds
(125). In order to evaluate the effect that the quorum-quenching
phage T7aiiA had on biofilm formation, E. coli and P. aeruginosa
were mixed together and allowed to form biofilms in the presence
of engineered or wild-type phage for 4 and 8 h (122). Phage T7aiiA
reduced the biomass by 74.9% and 65.9% at 4 and 8 h, respec-
tively, whereas control T7 phage caused only 23.8% and 31.7%
reductions, respectively, in comparison to the control (no phage)
(122).

Engineered Phages with Shifted or Broadened Host Ranges

Any individual phage typically infects a very limited range of bac-
terial strains within a given species. This specificity means that
phages can act as precision antimicrobial agents, but it can also
pose a major hurdle for phage therapy, as it is important to know
whether a given bacterial target is susceptible to a particular type
of phage prior to treatment. A combination of phages with differ-
ent host ranges in a single cocktail is currently the most common
approach taken to achieve a wider target spectrum, because a sin-
gle therapeutic mixture can be applied to a broader range of bac-
terial infections than a single phage alone. Although this strategy is
promising (94, 126—128), it remains difficult to target all bacterial
strains in a given species, and the diverse assortment of phages per
cocktail may unintentionally target bacteria outside the desired
range. This is a challenge with both natural and current-genera-
tion engineered phages. Assembly of phage cocktails may also re-
quire optimization of phage proportions within the cocktails to
improve performance (129, 130), which can be achieved based on
experimental design methodologies. An alternative to using cock-
tails composed of a large and diverse group of phages, which can
pose challenges for manufacturing, characterization, and engi-
neering, may be to assemble a more uniform set of phages based
on common scaffolds and host ranges that are shifted, expanded,
or both.

To demonstrate that it is possible to switch or extend the host
ranges of phages, several studies have exploited the fact that host
range is linked to tail fiber composition for some phages. Yoichi et
al. (131) genetically modified a T2 phage by swapping the long tail
fiber genes (gp37 and gp38) with those from phage PP01, which
specifically targets E. coli O157:H7. The exchange was done by
homologous recombination between the genome of phage T2 and
a plasmid carrying two regions of homology, flanking the gp37 and
gp38genes of PPO1. The recombinant phage T2ppD1, carrying the
PPO1 genes gp37 and gp38, had the same host range as phage PP01
but had lost the capacity to infect the original host of phage T2, E.
coli K-12 (131). An identical approach was used by Mahichi et al.
to expand the host range of phage T2. Because phage IP008 has a
broader host range than that of phage T2 (infecting 33% versus
7%, respectively, of environmental E. coli isolates), the tail fiber
genes gp37 and gp38 from phage T2 were exchanged, by recombi-
nation, with their homologous counterparts in phage IP008, re-
sulting in an engineered T2 phage with a host range identical to
that of TP008 (61).

A hybrid T3 and T7 phage (T3/7) was also devised in which part
of the tail fiber gene of T3 (gp17) was replaced with that of phage
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TABLE 1 Synthetic phages engineered by Ando et al., with respective genotypes and phenotypes”

Phage Genotype® Phenotype

T713(cgp17) T7WT gene 17 (1-447)-T3 gene 17 (448-1677) >10°-fold-reduced efficiencies of plating on E. coli BW25113 and E. coli
MG1655

T713gp17) T7WT Agene 17, T3 gene 17 >10%-fold-reduced efficiencies of plating on E. coli BW25113 and E. coli
MG1655

T7 1 3a(c-gp17) T7WT gene 17 (1-450)-13a gene 17 (451-1677) Forms plaques on E. coli ECOR16; infects E. coli BW25113 and MG1655

T7 5017 T7WT Agene 17, 13a gene 17 Forms plaques on E. coli ECOR16; does not infect E. coli BW25113 and
MG1655

T315cgp17) T3WT gene 17 (1-447)-T7 gene 17 (448-1662) Efficiencies of plating similar to those of T7 phage on E. coli BW25113 and
E. coli MG1655

T3 15(gp17) T3WT Agene 17, T7 gene 17 Efficiencies of plating similar to those of T7 phage on E. coli BW25113 and
E. coli MG1655

T3g(gp17) T3WT Agene 17, R gene 17 Infects Yersinia pseudotuberculosis IP2666 and YPIII as well as E. coli BL21

T7WT Agenes 11-12-17, K11 genes 11-12-17
K11WT Agenes 11-12-17, T7 genes 11-12-17

T7Kll(gpll—12—l7)
K11T7(gp11-12-17)

Infects Klebsiella sp. 390 but not E. coli
Infects E. coli but not Klebsiella spp.

“ Based on data from reference 85.
b WT, wild type.

T7. The T3/7 recombinant phage exhibited a broader host range
and a better adsorption efficiency than those of either of the wild-
type phages, i.e., T3 and T7 (132). Le et al. demonstrated that host
specificity in P. aeruginosa phages is also tail fiber dependent (60).
They first isolated a spontaneous mutant phage that exhibited a
broader host range than that of the parental phage, JG004. Anal-
ysis of the sequence encoding the putative tail fiber gene (ORF84)
in the spontaneous mutant revealed a single point mutation in this
gene. The authors replaced the homologous gene (ORF69) in
phage PaP1 with the tail fiber gene (ORF84) from phage JG004 by
homologous recombination, which resulted in a chimeric phage
capable of inducing plaque formation in the host strain of phage
JGO004 (P. aeruginosa PAO1) but not in the host strain of wild-type
phage PaP1 (P. aeruginosa PA1) (60).

Marzari et al. increased the host range of the filamentous co-
liphage fd by adding a receptor-binding domain from the filamen-
tous phage IKe, which encodes a receptor specific for N-pili, to the
N terminus of the fd gene 3 protein (g3p) (133). The chimeric fd
phage was able to infect E. coli strains bearing N-pili (133). The
filamentous coliphage fd, which normally infects E. coli, was also
engineered to recognize Vibrio cholerae (134). This was achieved
by fusing the minor coat gene pIII from fd with a sequence of the
orfU gene encoding the N-terminal 274 amino acids of a putative
minor coat protein gene from CTX®, another filamentous phage
(134). The recombinant phage fd-pIII°™ was able to infect V.
cholerae, but its ability to infect E. coli was not affected (134).

Using a yeast-based platform, Ando et al. engineered phage ge-
nomes to modulate their host ranges (85). Since E. coli phages T7
and T3 share high homology with each other, the authors ex-
changed the tail fiber gene 17, or fragments thereof, with its coun-
terpart from the other phage, as indicated in Table 1. The authors
also demonstrated that gene swapping between more distant
phage relatives could enable a genetically modified E. coli phage to
target Klebsiella bacteria and a genetically modified Klebsiella
phage to target E. coli bacteria (Table 1). This work further showed
that synthetic phage cocktails composed of phages with the same
scaffold but different tail components can be used to target mixed
bacterial populations and to selectively remove specific bacterial
species from them (85).

Although these strategies have modulated the host ranges of
several types of phage, the systematic, efficient, and high-through-
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put construction of phages with desired host ranges has yet to be
achieved. We envision that improved technologies for phage ge-
nome engineering, DNA synthesis, and DNA sequencing will
make it possible to establish such platforms and facilitate the con-
struction of well-defined phage cocktails with tunable host ranges.
In the future, host range determinants may be mined from se-
quence databases, synthesized, and swapped with portions of well-
characterized phage scaffolds to potentially identify novel phages
with desired target spectra.

Engineered Phages with Reduced Impacts on Mammalian
Systems

One of the concerns associated with the use of phages in the treat-
ment of bacterial infections is the capacity of the human immune
system to neutralize them due to their immunogenicity (39).
Hodyra-Stefaniak et al. demonstrated that in murine models of
the systemic inflammatory response, there is a decrease in the
availability of active phages in circulation and in numerous tissues
due to the action of phagocytes, antibodies, and the serum com-
plement system (135). To avoid the problem of phage elimination
by the host defense system, particularly by the reticuloendothelial
system (RES), Merril et al. adopted a serial passage technique
(136). This technique consisted of serial injections of phages into
mice to search for phage mutants capable of remaining in the
circulatory system for longer times (136). Using this method, the
authors isolated “long-circulating” mutants of the E. coli phage \.
The two \ variants, isolated after passaging phage N\ through 10
selection cycles, had 16,000- and 13,000-fold higher capacities to
evade RES clearance 24 h after intraperitoneal administration
than that of the parental A phage. Compared to the parental A
phage, both variant phages contained identical mutations in the
major capsid protein E, consisting of the replacement of a glu-
tamic acid with a lysine residue, and one of them had an additional
mutation in the capsid D protein (136). This technique was also
used to isolate long-circulating mutants of S. enterica serovar Ty-
phimurium phage P22, suggesting that the method can be gener-
alized to obtain other phages capable of evading the RES (136).
In addition, treatment with lytic phages can cause massive bac-
terial lysis, and the subsequent release of bacterial components
and toxins may trigger an immune response (9, 22). In order to
circumvent this problem, phages have been engineered as nonrep-
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licative or lysis-deficient mutants. For example, to minimize en-
dotoxin release, Hagens and Blisi engineered the lysogenic phage
M13 in two ways to express lethal but nonlytic proteins (137). The
engineered phage M13R encodes the restriction enzyme BglII,
which induces double-strand breaks in the bacterial chromosomal
DNA. The engineered phage M13S105 encodes a holin from
phage N (S105), which causes cytoplasmic membrane lesions.
Each of these engineered phages reduced E. coli cell counts by ca. 2
orders of magnitude in just 2h (137). The endotoxin levels present
in the supernatants 4 h after E. coli infection with phages M13R
and M13S105 increased only 7- and 6-fold, respectively, which
was much lower than the 27-fold increase observed for Acl™
phage, a lytic lambda phage used as a control (137). However,
regrowth of the bacterial cells was observed 120 to 300 min after
infection, suggesting the emergence of phage-resistant E. coli mu-
tants (137).

The same authors genetically modified the P. aeruginosa fila-
mentous phage Pf3 to become a nonlytic, nonreplicative lethal
variant (Pf3R) by replacing an export protein gene in the phage
genome with the BglII endonuclease gene (40). In vitro studies
showed that Pf3R was lethal to P. aeruginosa PAOI, reducing the
number of CFU by 99% after 90 min of infection, while endotoxin
release was minimal. To evaluate its in vivo therapeutic efficacy,
the engineered phage was administered to mice 45 min after P.
aeruginosa infection (40). Treatment with Pf3R resulted in about
75% survival of mice, while the Pf3-treated and untreated mice
died. The levels of inflammatory markers, such as tumor necrosis
factor alpha (TNF-a) and interleukin-6 (IL-6), were almost twice
as high after phage infection of mice with the original lytic phage
(Pf3) as those after phage infection of mice with the recombinant
phage, Pf3R (40). These results demonstrated that the engineered
Pf3R phage could effectively treat P. aeruginosa infections in mice,
while endotoxin release was kept to a low level (40).

Similarly, Matsuda et al. (138) showed that treating E. coli peri-
tonitis in mice with the lysis-deficient phage T4LyD significantly
increased the survival rate (81% survival at 48 h) compared to that
of mice treated with the wild-type phage (52% survival), mice
treated with the B-lactam moxalactam sodium (33% survival), or
control untreated mice, which died within 20 h (138). At the same
time, T4LyD-treated mice had lower endotoxin and cytokine
(TNF-acand IL-6) levels 12 h after infection than the other groups,
indicating that the systemic immunological side effects of phage
therapy had been attenuated (138). Similar to the results obtained
with M13S105 and Pf3R, the effectiveness of T4LyD suggests that
converting lytic to nonlytic phages is a fruitful strategy for reduc-
ing their immunological effects.

In another report of changing a lytic phage to a nonlytic
phage, a Staphylococcus aureus temperate phage, P954, was mod-
ified by homologous recombination to inactivate the gene coding
for the endolysin responsible for bacterial cell lysis (139). In vitro
studies showed that the endolysin-deficient P954 phage had as
much bactericidal activity as the wild-type phage, and in vivo stud-
ies revealed that administration of the engineered phage fully res-
cued mice from fatal methicillin-resistant S. aureus (MRSA) in-
fection, though the immune response was not characterized
(139).

The aforementioned approaches were undertaken indepen-
dently to lower the immunogenicity of phage therapy by finding
mutations that reduce phage clearance by the RES and by inhib-
iting massive bacterial lysis. It remains to be determined whether
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these mechanisms can be integrated into a single phage to achieve
high efficacy at treating infections while simultaneously reducing
immune responses.

Engineering Phages To Create DNA Sequence-Specific
Antimicrobials

One of the major problems of antibiotics is their broad spectrum
of activity, which leads to the killing not only of targeted patho-
gens but also of nontargeted commensal bacteria (140). This off-
target activity can alter the microbiome and result in antibiotic-
associated infections, such as those caused by Clostridium difficile
(11, 140). Phages can be engineered to kill bacteria based on their
genetic signatures, resulting in much more precisely aimed anti-
microbial activity. Building on CRISPR-Cas technology, Citorik
et al. and Bikard et al. developed antimicrobials whose spectrum
of activity can be programmed against specific DNA sequences,
enabling the killing of only those bacteria carrying targeted DNA,
such as that encoding antibiotic resistance or virulence (141, 142).
This approach, based on the CRISPR-Cas system, consists of de-
livering RNA-guided nucleases (RGNs) on conjugative vectors or
phagemids into bacterial cells, where they target specific DNA
sequences for cleavage. Once introduced into bacterial cells, the
RGNS seek out a specific genetic sequence, where they induce a
double-strand break, leading to cell death or plasmid loss. In the
absence of the target sequence, the RGN have no effect on bacte-
rial viability (141). Thus, this approach enables selective pressure
to be exerted against bacteria at the level of genes. These authors
designed RGN constructs to target blay ., and blagyyy 15, encod-
ing extended-spectrum resistance and pan-resistance to (3-lactam
antibiotics, respectively. The in vitro treatment of E. coli EMG2
carrying the resistance plasmid pNDM-1 (blaypy,.,) or pPSHV-18
(blagry.,) with the respective phagemid-packaged RGN
(®PRGN) at an MOI of 20 reduced the number of viable cells by 2
to 3 orders of magnitude, with no significant reduction of counts
for cells lacking the target sequences. Furthermore, the authors
tested the system against a quinolone-resistant strain of E. coli in
which quinolone resistance was due to a single-nucleotide muta-
tion in DNA gyrase (gyrA). The PRGN targeted against gyrApg, g
was cytotoxic for the E. coli strain harboring the chromosomal
mutation but not for the otherwise isogenic parental strain. This
system was further tested in vivo, in a Galleria mellonella infection
model, to determine whether it could target a virulence factor of
enterohemorrhagic E. coli O157:H7 (EHEC) chromosomally en-
coded by the eae gene. G. mellonella larvae were infected with
EHEC, and a PRGN construct targeting eae (PRGNeae) was ad-
ministered at an MOI of 30. The survival of ®RGNeae-treated G.
mellonella was significantly higher than that of controls (buffer
treatment only or treatment with a ®RGN construct targeting an
absent DNA sequence) (141).

The same approach was used by Bikard et al. to selectively kill
antibiotic-resistant and virulent S. aureus strains (142). Using the
CRISPR-Cas system, they first created a phagemid to target the
aph-3 kanamycin resistance gene in S. aureus. After treatment
with a staphylococcal phage (PNM1) carrying this phagemid at
an MOI of 20, the number of viable kanamycin-resistant S. aureus
CFU was reduced by 4 orders of magnitude, while nontargeted
cells remained unaffected (142). In vivo experiments were also
performed with a mouse skin colonization model. After 24 h of
treatment with the CRISPR-Cas9 phagemid directed against aph,
the population of kanamycin-resistant S. aureus declined from
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50% to 11.4% (142). The same method was also effective against
an S. aureus clinical isolate. In that case, the mecA and sek genes,
encoding methicillin resistance and an enterotoxin, respectively,
were targeted by the phagemid (142).

Sequence-specific nucleases delivered by phages or phage-de-
rived particles thus have the potential to be developed as novel
antimicrobial agents effective against emerging and well-estab-
lished virulent and antibiotic-resistant pathogens. The major hur-
dle for the future use of this technology is to achieve efficient
delivery of RGN into a broad range of target bacteria. The con-
tinued development of phage-based gene delivery vectors with
tunable host ranges may be able to address this challenge.

PHAGE-DERIVED ANTIMICROBIALS

In addition to harnessing phages for their antimicrobial (lytic)
properties or as delivery vehicles for antimicrobial agents, phage
proteins can be used on their own as direct antimicrobials (143—
145). Once phages have infected bacteria and undergone replica-
tion, phage-encoded endolysins degrade the peptidoglycan of the
bacterial cell wall from within the cell. Endolysins thus come into
play at the terminal stage of the phage replication cycle, causing
host cell lysis (146). Endolysins can be effective when applied to
the outside of the bacterial cell, even though they are naturally
active from the inside. Experimentally, these enzymes have been
expressed, purified, and used mostly against Gram-positive bac-
teria, which are more susceptible to lysis than Gram-negative bac-
teria because they lack an outer membrane (147, 148). Endolysins
added externally to Gram-positive bacteria can result in rapid lysis
(147, 149). Furthermore, they have successfully prevented or
treated infections caused by Gram-positive bacteria in animal
models (150-155).

Phage endolysins have also been engineered. For example, one
study reported the construction of four chimeric phage endolysins
(Cpl-711, Cpl-771, Cpl-117, and Cpl-177) by shuffling and com-
bining the structural elements (catalytic domain, linker, and cell
wall-binding domain) of two pneumococcal phage endolysins,
Cpl-1 and Cpl-7S (a synthetic variant of Cpl-7 with improved
bactericidal activity) (156). The bactericidal activity of the new
chimeric endolysins against Streptococcus pneumoniae was evalu-
ated, and Cpl-711 was found to be the most efficient chimera. This
chimera was composed of the catalytic domain of Cpl-7S and the
linker and cell wall-binding domain of Cpl-1. At a concentration
0f0.01 pg/ml, Cpl-711 reduced the number of S. pneumoniae cells
by 2 orders of magnitude after 1 h of treatment, whereas Cpl-1
reduced cell viability by only 15%. At 1 pg/ml, the chimeric en-
zyme Cpl-711 reduced the number of viable cells in pneumococcal
biofilms by 4 orders of magnitude after a 2-h treatment, which was
an improvement over the approximately 1.5 orders of magnitude
of killing by the parental proteins, Cpl-1 and Cpl-7S (156). In in
vivo assays, mice infected intraperitoneally with an S. pneumoniae
suspension and treated 1 h after bacterial challenge with Cpl-711
had about 50% greater survival than those treated with Cpl-1
(156). This study demonstrated the flexibility with which new and
improved phage endolysins can be engineered. Because phage en-
dolysins are diverse, engineering them may provide a pipeline of
novel antimicrobial agents. In fact, similar work has been per-
formed on phage endolysins isolated from Listeria spp. (157),
Streptococcus spp. (158, 159), and Staphylococcus spp. (158-161).

Gram-negative bacteria are difficult to lyse because the outer
membrane blocks access of the endolysin to the peptidoglycan.
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Endolysin-mediated lysis of Gram-negative bacteria has been
achieved, however, through the use of permeabilizing agents
(162). There are two classes of outer membrane permeabilizers: (i)
polycationic agents, such as polymyxin and its derivatives, which
interact with phospholipids in the cell membrane (163, 164), or
lysine polymers, which adsorb to the cell surface and block growth
(164, 165); and (ii) chelators, such as EDTA, which remove ions
from the outer membrane, leading to its disintegration (163, 164),
or weak organic acids, which penetrate the cell wall and interfere
with bacterial physiology (163, 164). Nonetheless, it is important
to highlight that the in vivo toxicity of the outer membrane per-
meabilizers might limit the applicability of this approach. For ex-
ample, both EDTA and citric acid were found to have cytotoxic
effects on macrophages ex vivo (166).

Briers et al. combined endolysin EL188 from P. aeruginosa
phage EL with outer membrane permeabilizers and evaluated the
antibacterial activity against P. aeruginosa strains. The permeabi-
lizers tested were polymyxin B, poly-L-lysine, EDTA, and citric
acid (164). In vitro antibacterial assays revealed that EDTA was the
best permeabilizer: the combination of the endolysin and EDTA
reduced the number of P. aeruginosa PAO1 cells in mid-log phase
by more than 4 orders of magnitude in just 30 min (164). Simi-
larly, another study in which EDTA was used as a permeabilizer
reported reductions of up to approximately 3 orders of magnitude
of P. aeruginosa PAO1 cell counts after 30 min of incubation with
globular endolysins encoded by phages infecting Gram-negative
bacteria (162). Oliveira et al. reported the lethality of a Salmonella
phage endolysin (Lys68) combined with organic acids against
Gram-negative bacteria (167). The best results were achieved
against Pseudomonas cultures: reductions of Pseudomonas aerugi-
nosa cells of approximately 2.4, 1.5, and 3.3 orders of magnitude
and reductions of Pseudomonas fluorescens cells of approximately
1.6, 1.4, and 5.4 orders of magnitude were observed 30 min after
applying Lys68 in combination with EDTA, citric acid, and malic
acid, respectively (167). Determining the best combination of per-
meabilizer and lysin for a given target bacterium currently appears
to be performed empirically.

To circumvent the problem of outer membrane permeability,
Briers et al. engineered endolysins to contain LPS-destabilizing
peptides. The resulting endolysins, called Artilysins, penetrate the
bacterial outer membrane, which is something that the original
endolysins are not capable of doing (168). With this approach, the
LPS ion-based membrane stabilization is disrupted by the physi-
cochemical properties of the synthetic peptides coupled to the
endolysins, enhancing their killing effect (168). Thus, the fusion of
a polycationic nonapeptide (PCNP) to the OBPgp279 endolysin
(from P. fluorescens phage OBP) enhanced the bactericidal activity
of the native endolysin against P. aeruginosa PAO1 from 1.10 to
2.61 orders of magnitude of reduction, even in the absence of
permeabilizers. Although the PCNP-fused endolysin was found to
be effective without permeabilizers, its activity was enhanced by
EDTA: viable cell counts were reduced by 5.38 orders of magni-
tude and 4.27 orders of magnitude for P. aeruginosa PAO1 and
multidrug-resistant P. aeruginosa Br667, respectively, within 30
min (168).

Lood etal. built a genomic library based on prophages induced
from the Gram-negative organism Acinetobacter baumannii to
screen for genes encoding antibacterial endolysins (169). They
identified and isolated several endolysins active against A. bau-
mannii. In vitro studies showed that phage lysin PlyF307, the one
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with the greatest activity, reduced exponentially growing cultures
of A. baumannii clinical isolates by >5 orders of magnitude within
2 h. In vitro treatment of A. baumannii biofilms with PlyF307 for 2
h reduced the number of cells by 1.6 orders of magnitude. Fur-
thermore, the lysin also rescued mice from lethal A. baumannii
bacteremia: while 90% of the buffer-treated mice died within 2
days, 50% of PlyF307-treated mice survived the lethal dose of A.
baumannii. This was the first study to use native endolysins with-
out additional factors for the treatment of Gram-negative infec-
tions in mice (169).

PHAGE ENGINEERING FOR BACTERIAL DETECTION AND
DIAGNOSTICS

Most of the methods used to detect and identify bacterial patho-
gens in food, hospital, and industrial environments are time-con-
suming, in part because they require enrichment steps for in-
creased sensitivity and/or specificity (170, 171). Traditional
plating techniques not only are laborious but also often fail to
detect pathogens present in samples at low levels (170-172). Other
methods, such as antibody-based ones, do not usually perform
well for complex samples without enrichment to amplify the bac-
terial targets (173). Techniques such as PCR or hybridization-
based assays can be very sensitive but are not able to discriminate
between live and dead cells without bacterial enrichment, and they
also require the careful design of primers to avoid off-target hits
and the misidentification of species (171, 173). Recent advances in
genetic engineering and synthetic biology, particularly the devel-
opment of phage-based tools for pathogen detection, have made it
possible to overcome such limitations.

Loessner et al. described a rapid, easy, and sensitive method for
using engineered phage to detect Listeria monocytogenes in con-
taminated food (59). This method consisted of inserting, by ho-
mologous recombination, a Vibrio harveyi luxA and luxB gene
fusion (luxAB) downstream of the major capsid protein gene of
Listeria phage A511 (59). Upon infection of the targeted bacteria,
this engineered phage generated light. Detectable luminescence
was generated rapidly, within 2 h of application, even on food
contaminated with as few as 5 X 10 L. monocytogenes cells/ml
(30). When an enrichment step was included, levels of <1 CFU/g
could be detected by use of the engineered phage (59). Sarkis et al.
described a similar method for detecting live mycobacteria. They
cloned aluciferase gene into the tRNA region of the genome of the
L5 mycobacteriophage and used the recombinant mycobacterio-
phage to identify Mycobacterium smegmatis cells. Aliquots of cul-
tures with hundreds of M. smegmatis cells produced a positive
signal (above the background) in just a few hours. Even samples
with as few as 12.2 and 2.7 CFU/100 wl produced positive signals,
though only after 2 and 3 days, respectively (62).

Phages expressing green fluorescent protein (GFP) have been
proposed as a fast and accurate method for detecting E. coli (64,
65, 174). The gfp gene, originally carried on a plasmid, was in-
serted by homologous recombination into the genomes of phages
T4 (wild type), T4e™ (a gene e amber mutant phage) (64), and
PPO1 (65) such that it was displayed on the small outer capsid
(SOC) of these phages, resulting in phages T4wt/GFP, T4e™ /GFP,
and PP01-SOC/GFP (GFP introduced into the C terminus of
SOC) or PP01-GFP/SOC (GFP introduced into the N terminus of
SOCQ), respectively. The gfp gene was also inserted into phages
IP008 and IP052, within the e gene, which encodes a phage ly-
sozyme, resulting in phages IP008e-/GFP and IP052e-/GFP,
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which exhibited suppressed lytic activity (174). Incubating T4wt/
GFP with E. coli K-12 led to increased fluorescence intensity dur-
ing the initial stages of infection but then resulted in cell lysis,
which made it difficult to identify phage-infected cells by fluores-
cence microscopy. On the other hand, E. coli incubated with the
engineered phage T4e™ /GFP exhibited fluorescence, the intensity
of which increased with the infection time (64). The GFP-labeled
PPO1 phage was able to specifically detect E. coli O157:H7, and
fluorescence could be observed by microscopy after as little as 10
min of incubation (65). Engineering phages to express multiple
gfp genes can enhance the detectable signal. For example, E. coli B
cells infected with phage IP008e-/GFP or IP052e-/GFP exhibited
low fluorescence intensity. When gfp was additionally fused to the
soc gene in phages IP008e-/GFP and IP052e-/GFP, resulting in
IP008e-/2xGFP and IP052e-/2xGFP, the fluorescence intensity
was stronger and increased with incubation time (174). The de-
tection limit of this approach has not yet been evaluated.

Edgar et al. proposed a biodetection system that combines in
vivo biotinylation of an engineered phage followed by conjugation
of the phage to streptavidin-coated quantum dots (QDs), semi-
conductor nanocrystals that give a fluorescence signal (175). The
T7 coliphage was engineered to display a small biotinylation pep-
tide on its major capsid protein. After propagation of the recom-
binant phage in the bacterial host, the biotinylated progeny phage
could be detected by the fluorescence of the streptavidin-coated
QDs. If the host was not present, biotinylated phage were not
produced, and the functionalized QDs did not bind and were
washed away. This method is fast, sensitive, and specific: as few as
10 and 20 E. coli cells/ml were detected by fluorescence micros-
copy within 1 h for experimental and environmental samples,
respectively (175).

Piuri et al. genetically engineered the mycobacteriophage TM4
to carry a fluorescence-encoding reporter gene, namely, gfp or
ZsYellow (176). The engineered mycobacteriophages detected
Mycobacterium tuberculosis by delivering the reporter genes into
the cells; the fluorescence could then be monitored by microscopy
or flow cytometry (176). With this rapid and sensitive method,
fewer than 100 cells present in the 5-pl aliquots used for micros-
copy could be detected, and bacterial antibiotic susceptibility
could be determined in less than 24 h, as fluorescence was sup-
pressed only in rifampin- or streptomycin-susceptible cells when
the corresponding antibiotics were added (176, 177).

Diagnostic phage technologies are being translated into actual
use outside research labs (173). For example, the first enrichment-
free pathogen diagnostic system for Listeria was recently released
for commercial applications (178). In addition, for phages to be
used as personalized antimicrobials in the era of precision medi-
cine, rapid and accurate diagnostics are needed to identify patho-
gens and determine which phages are most suitable for therapy.
We envision that phage-engineering technologies will play an im-
portant role in a wide range of settings where rapid microbial
detection is desirable.

PHAGE ENGINEERING FOR DRUG DELIVERY SYSTEMS

In addition to the delivery of engineered DNA as described above,
phages can be adapted for targeted drug delivery to both prokary-
otic and eukaryotic cells, including cancer cells. Most of the stud-
ies done so far rely on phage display, a powerful screening process
by which peptides that specifically bind to the target cells of inter-
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est are selected from a library of phage particles expressing a wide
range of functional peptides on the phage coat surface (179).

Enhancing Antibiotic Activity

Yacoby et al. used filamentous phages (fd and M13) to target S.
aureus either by displaying target-specific peptides on the major
coat protein or by antibody-mediated targeting. The latter in-
volved linking immunoglobulin G (IgG) antibodies to the phages
via an IgG-binding domain displayed on the minor coat protein of
the phage. In both cases, the authors chemically conjugated the
phages with chloramphenicol, a bacteriostatic antibiotic, through
a labile linker that enabled controlled release (180). After bacteria
were exposed to the phage-drug conjugates, phages bound to the
target cells and chloramphenicol was released, retarding bacterial
growth. However, inhibition of bacterial growth by this system
was limited due to the hydrophobic nature of chloramphenicol,
which restricted the loading capacity to fewer than 3,000 drug
molecules/phage (180). This limitation was later overcome by us-
ing hydrophilic aminoglycoside antibiotics (e.g., neomycin) as
branched, solubility-enhancing linkers (181). This new approach,
in which chloramphenicol was conjugated via a neomycin linker,
allowed the authors to load over 40,000 chloramphenicol mole-
cules/phage (181). When this drug-carrying phage was tested in
vitro by measuring the optical densities of the bacterial cultures, it
was found to inhibit the growth of S. aureus, Streptococcus pyo-
genes, and E. coli almost completely (181). Moreover, this ap-
proach was nontoxic to mice and less immunogenic than the use
of native, unconjugated phage particles; the authors surmised that
drug conjugation may have prevented antibodies from recogniz-
ing phage (182).

Delivery of Anticancer Drugs

A drug delivery platform for cancer therapy based on the use of
genetically modified and chemically manipulated f{USE5-ZZ fila-
mentous phages has also been described (183). These phages were
first engineered to display a ligand that conferred specificity to the
target cancer cells on the major coat protein and then loaded with
cytotoxic drugs (hygromycin or doxorubicin) by chemical conju-
gation. In vitro, these drug-carrying phages targeted ErbB2-over-
expressing human breast adenocarcinoma SKBR3 cells. Once en-
docytosed, the phages were degraded, releasing the drug inside the
cancer cells and resulting in about 50% inhibition of target cell
growth, a >1,000-fold improvement in the potency of hygromy-
cin compared with that of free-drug treatments lacking the phage
and the ligand (183).

Similarly, Du et al. coupled phages that displayed a hepatocar-
cinoma-specific binding peptide to doxorubicin in order to create
a drug delivery strategy for hepatocellular carcinoma (184). The
binding peptide was selected by repeated panning of phage display
libraries inside mice to identify peptide motifs that directed
phages to tumors (184). In vivo antitumor activity tests showed
that all mice treated with the drug-loaded phages survived during
the 25 weeks of the experiment, whereas only 40% of the mice
treated with free doxorubicin survived (184).

The phage library {8/8 was screened for a highly specific peptide
targeting the metastatic prostate cancer cell line PC-3M (185). A
prostate cancer-specific phage was isolated and then converted to
a phagemid which encoded the expression of emerald GFP under
the control of a cytomegalovirus promoter (185). The in vitro
delivery and production of emerald GFP by the phagemid were
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observed in PC-3M cells by fluorescence microscopy, indicating
that this technique may potentially be used to deliver therapeutic
genes to prostate cancer cells. Wang et al. (186) screened a phage
library to identify a breast cancer MCE-7 cell-specific peptide
fused with a phage coat protein. These phage particles were cou-
pled with doxorubicin and tested in vivo. Antitumor activity was
enhanced in mouse models compared to results obtained with the
nontargeted formulations, and there was no detectable hepatotox-
icity (186).

A refactored M13 phage was used for tumor cell imaging and
drug delivery to prostate cancer cells in vitro (187). First, the ge-
nome of phage M13 was redesigned to separate the regulatory
elements and coding regions of gene VII and gene IX, which over-
lap naturally, so that these genes could be manipulated indepen-
dently. For example, this redesign allowed the authors to modify
the N-terminal end of the p9 protein without affecting p7. Three
peptides were displayed on different phage components of the
refactored M13 phage: the SPARC (secreted protein, acidic and
rich in cysteine) binding peptide (SBP) on the p3 phage minor
coat protein encoded by gene III, a DFK amino acid motif on the
p8 phage major coat protein encoded by gene VIII, and a biotin
acceptor peptide (BAP) on the p9 minor coat protein encoded by
gene IX. The modified phage was designated M13-983. SPARC is a
matricellular glycoprotein overexpressed in many cancers (188,
189), while the DFK peptide sequence is recognized by cathepsin
B, a lysosomal cysteine protease overexpressed in prostate cancer
(190, 191). Doxorubicin was then conjugated to the aspartic acid
residue of p8. In order to further functionalize M13-983 for mi-
croscopic imaging, the p9 protein displaying BAP was enzymati-
cally biotinylated and incubated with streptavidin-coated Alexa
Fluor 488 dye, resulting in phage M13-983-Alexa-DOX (187).
This phage was subsequently tested in vitro on human prostate
cancer cell lines expressing SPARC at either higher (C42B) or
lower (DU145) levels. This modified phage was shown to be an
effective platform for targeted imaging, since the normalized flu-
orescence intensity measured by a plate reader was about 10 times
greater for C42B cells than for DU145 cells, revealing efficient
targeting of SPARC by the phage. Furthermore, M13-983-Alexa-
DOX was ca. 100 times more cytotoxic than free doxorubicin for
the target cells (187).

Antibody Delivery

Frenkel and Solomon engineered filamentous phages to mediate
antibody delivery to the brain as a way to detect Alzheimer’s dis-
ease (192). A filamentous phage was engineered to display anti-
bodies to amyloid-f peptide (AB) as a probe to detect the accu-
mulation in the brain of AB, a peptide thought to be involved in
the progression of Alzheimer’s disease (193—196). Phages display-
ing AB-specific antibodies were administered intranasally to
transgenic mice. The resulting in vivo targeting of A deposition
confirmed that the engineered phages had reached the central ner-
vous system, owing to the properties of the phage-based delivery
vector, and had bound A in vivo, owing to the antibody, with
high specificity and no detectable toxicity. This binding was con-
firmed upon sectioning the brain and staining the sections by use
of thioflavin-S and antiphage antibodies, followed by visualiza-
tion under a fluorescence microscope (192). These results show
that phages may play an important role in imaging in the future,
particularly if the system can be adapted to include isotopes al-
ready used for in vivo diagnostic imaging in humans (192). In
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addition, engineered phages may be used to achieve specific deliv-
ery of drugs to or into target cells. This localized action may de-
crease the concentration of the drug needed for a specific treat-
ment and the concentration of free drug in the organism. Thus,
there may be benefits in terms of reduced side effects and lowered
costs. Nonetheless, more studies on the pharmacokinetics and im-
munogenicity of these drug-delivering phages are needed before
their application can be extended toward clinical use.

Phages for Vaccine Development

Phages may also prove useful for vaccine development, as shown
in preliminary studies of human immunodeficiency virus (HIV),
anthrax, and foot-and-mouth disease virus (FMDV). By engineer-
ing phages to display various antigens on their surfaces, vaccines
can be created that are adaptable to evolving medical or veterinary
needs, such as new outbreaks.

An effective HIV vaccine may include multiple antigens and
should generate broadly neutralizing antibodies (197, 198).
Sathaliyawala et al. proposed a vaccine delivery system for HIV
that used T4 phage (198). Up to three purified HIV antigens were
displayed, individually or in combination, on the T4 phage capsid
surface to generate a multicomponent HIV vaccine. The immu-
nogenicity of the T4-displayed HIV antigens was tested in mice,
and the phage-based vaccine was found to elicit strong antibody
and cellular immune responses (198). The same group also used
the T4 system to display combinations of antigens derived from
anthrax toxin proteins (199). A T4 phage displaying three anthrax
toxin antigens elicited strong immune responses in mice, in the
form of anthrax-specific antibodies; furthermore, the sera alone
could block the cytotoxicity of lethal toxin for a specific macro-
phage cell line (199).

Ren et al. used a T4 phage display system to generate a vaccine
against the lethal virus FMDV (200). The FMDV-T4 phage re-
combinant vaccines proved to be effective in mouse model assays,
affording up to 100% protection against the FMDV O serotype
after oral or subcutaneous immunization (200). FMDV vaccina-
tion requires multivalent vaccine preparations to confer protec-
tion against the multiple serotypes of the virus. The putative ad-
vantage of this technology is that it would facilitate the
development of tailor-made serotype and subserotype FMDV
vaccines.

PHAGE ENGINEERING FOR MATERIALS SCIENCE

In addition to their applications in human health, veterinary
health, and food safety, phages have been adapted for use in ma-
terials science. By combinations of phage display and genetic en-
gineering techniques, phages have been used to build novel nano-
structured materials with various applications, such as energy
generation and storage (201-204), biosensing (205-207), and tis-
sue regeneration (208-210). The well-defined shape of M13 and
the possibility of displaying functional peptides on its surface have
made it the phage of choice most often used for the assembly of
new materials (201, 209, 211). Genetically engineered M 13 phages
have been adapted to assemble and arrange quantum dots (212,
213), build liquid crystals and films (214-216), and fabricate na-
norings (217) and micro- and nanofibers (218).

In 2006, Nam et al. reported the use of M13 to synthesize and
assemble nanowires of cobalt oxide for the fabrication of battery
electrodes (202). M 13 was first engineered to display gold-binding
peptides with affinity for cobalt ions on its major coat protein
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(202). The engineered M13 phages were then used to form nano-
wires of gold-cobalt oxide, improving the storage capacity of lith-
ium ion batteries (202). Later, the same group, using M13-based
cobalt oxide nanowires, built and characterized microbattery elec-
trodes with full electrochemical functionalities (charge storage ca-
pacity and performance rate) (219). Cobalt manganese oxide
nanowires made by M13 phage-mediated synthesis have also been
used to build high-capacity lithium-oxygen battery electrodes
(220).

M13 phages have also served as templates for the integration of
single-walled carbon nanotubes (SWNTs) into photovoltaic de-
vices for highly efficient electron collection (221). This method
stabilized the SWNTs while maintaining their electronic proper-
ties and increasing the power conversion efficiency in dye-sensi-
tized solar cells (221).

Phage-based materials can also serve medical aims. M13-
functionalized SWNTs have been used as effective probes for
noninvasive fluorescence imaging of prostate tumors in mice
(207), as well as to target SPARC and to visualize deep, dissem-
inated tumors in mouse models of human ovarian cancers
(222). By attachment of an antibacterial antibody to the p3
minor coat protein of the M13-SWNT complex, probes were
made that could be used to image bacterial infections in vivo
(223). S. aureus endocarditis in mice was visualized by this
method, and deeply buried infections were detected with high
contrast and high specificity (223). In order to image tumors in
mice in vivo, M13 was modified to display a SPARC-binding pep-
tide on the p3 minor coat protein and a triglutamate motif on the
p8 major coat protein for the templated assembly of magnetic iron
oxide nanoparticles (224). This strategy improved the magnetic
resonance contrast of prostate cancer in mice compared with that
of traditional nanoparticles used clinically, as each SPARC-target-
ing phage particle delivered a large number of detectable nanopar-
ticles into the target cells (224).

Mao et al. synthesized phage-based fibers and coatings with
antibacterial properties by engineering phage M 13 to express neg-
atively charged glutamic acid peptides on its p8 major coat pro-
tein. Silverized phage fibers were then created by the electrostatic
binding of silver ions, which have antibacterial properties (225).
In vitro studies showed that these phage-based fibers exhibited
bactericidal activity against Staphylococcus epidermidis and E. coli
strains, which was visualized by fluorescence-based live-dead
staining and zones of inhibition. Silverized phage fibers may thus
be useful as anti-infective materials (225).

Genetically engineered M13 phages have also been used to con-
struct novel tissue-regenerating materials. Merzlyak et al. engi-
neered the M13 phage to display cell signaling motifs (laminin
peptides RGD and IKVAV) at the N terminus of the p8 major coat
protein (209). These phage building blocks self-assembled into
structurally aligned liquid crystalline-like matrices that could
maintain the viability, proliferation, and differentiation of hip-
pocampal neural progenitor cells, as well as control their direc-
tional growth (209). The same research group reported the use of
engineered M13 phages to fabricate directionally organized two-
and three-dimensional phage-based scaffolds, which showed
good cytocompatibility and supported the directional growth and
encapsulation of fibroblast cells (226). Similarly, Wang et al. as-
sembled M13-based matrices that provided a biomimetic mi-
croenvironment with controlled biochemical and biophysical
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cues for the directed differentiation of induced pluripotent stem
cells (227).

CONCLUSIONS

The arrival of the synthetic biology era married with the prodi-
gious diversity of phages has led to powerful applications for ther-
apeutics, diagnostics, and materials science. The introduction of
new genetic engineering technologies has led to a more precise
and accelerated modification of phage genomes for basic science
as well as engineering. Phages have already been used to create new
anti-infective agents, diagnostics, drug delivery systems, and vac-
cines, as well as new materials for nanoscale devices, imaging, and
tissue scaffolds.

Despite the advances described above, phage research is still in
its infancy. The tremendous diversity of phage types and struc-
tures in nature (228, 229) has not yet been fully tapped. In fact,
most naturally occurring phages have not yet been propagated in
the lab. Of those that are known, many have not yet been charac-
terized or are not yet amenable to genetic manipulation. Thus,
phage engineering has so far involved only a small percentage of
existing phage types. For example, most materials science appli-
cations have been based on the M13 phage, even though phages
with other morphologies and sizes might extend the practical ap-
plications of phages in this field.

Next-generation sequencing technologies (230, 231) have the
potential to deposit phage genomes or phage-derived sequences
into bioinformatic databases in large quantity without the need to
first isolate these phages in the lab. These sequences can then be
mined either to recreate natural phages via direct digital-se-
quence-to-DNA synthesis or to engineer novel phages that com-
bine parts derived from various phages. New technologies are fur-
ther needed to accelerate the design-build-test cycle for creating
specialized phages and to make it possible to translate proof-of-
concept academic work into real-world use more efficiently. As
described above, highly reliable and rapid strategies that can be
generalized to a wide range of phages are still lacking. Many strat-
egies for engineering phages require the ability to genetically mod-
ify their bacterial hosts or to efficiently deliver exogenous DNA
into these hosts, which is still a challenge for many bacterial spe-
cies. Thus, new tools for genetic manipulation or DNA transfor-
mation are needed. Ideally, it would be possible to introduce mul-
tiple genetic alterations into phage genomes with high efficiency
and at precise locations.

Finally, the vast majority of the work described in this review
has resulted in genetically modified phages that may have signifi-
cant benefits for diagnosing and treating bacterial infections, for
treating nonbacterial diseases, or for constructing new materials.
Despite the potential benefits, the acceptance of genetically mod-
ified phages for real-world applications may vary across different
regions of the world. Strategies for inactivating phages so that they
cannot propagate outside the lab, for example, by deleting essen-
tial protein genes from the phage genome and supplying these in
trans in production hosts, may help to address such concerns. In
the case of human use, the choice of compelling areas of tremen-
dous medical need (e.g., for use against Gram-negative pathogens
that are highly resistant to antibiotics and other antimicrobials)
and explicit demonstrations of safety will both be important. Fur-
thermore, techniques to contain the use of genetically modified
phages for diagnostic and materials science applications and to
inactivate the phages after use may also help to mitigate these
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issues. In summary, phage engineering is an area of research that is
attracting intense interest and has great potential utility, but it has
yet to be fully exploited.
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