28 research outputs found

    Whole genome sequencing and microsatellite analysis of the Plasmodium falciparum E5 NF54 strain show that the var, rifin and stevor gene families follow Mendelian inheritance

    Get PDF
    Background: Plasmodium falciparum exhibits a high degree of inter-isolate genetic diversity in its variant surface antigen (VSA) families: P. falciparum erythrocyte membrane protein 1, repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR). The role of recombination for the generation of this diversity is a subject of ongoing research. Here the genome of E5, a sibling of the 3D7 genome strain is presented. Short and long read whole genome sequencing (WGS) techniques (Ilumina, Pacific Bioscience) and a set of 84 microsatellites (MS) were employed to characterize the 3D7 and non-3D7 parts of the E5 genome. This is the first time that VSA genes in sibling parasites were analysed with long read sequencing technology. Results: Of the 5733 E5 genes only 278 genes, mostly var and rifin/stevor genes, had no orthologues in the 3D7 genome. WGS and MS analysis revealed that chromosomal crossovers occurred at a rate of 0–3 per chromosome. var, stevor and rifin genes were inherited within the respective non-3D7 or 3D7 chromosomal context. 54 of the 84 MS PCR fragments correctly identified the respective MS as 3D7- or non-3D7 and this correlated with var and rifin/stevor gene inheritance in the adjacent chromosomal regions. E5 had 61 var and 189 rifin/stevor genes. One large non-chromosomal recombination event resulted in a new var gene on chromosome 14. The remainder of the E5 3D7-type subtelomeric and central regions were identical to 3D7. Conclusions: The data show that the rifin/stevor and var gene families represent the most diverse compartments of the P. falciparum genome but that the majority of var genes are inherited without alterations within their respective parental chromosomal context. Furthermore, MS genotyping with 54 MS can successfully distinguish between two sibling progeny of a natural P. falciparum cross and thus can be used to investigate identity by descent in field isolates

    Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression

    Get PDF
    The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host’s immune system, thus promoting overall parasite survival in the face of host immunity

    Effects of varying case definition on carpal tunnel syndrome prevalence estimates in a pooled cohort

    Get PDF
    OBJECTIVE: To analyze differences in carpal tunnel syndrome (CTS) prevalence using a combination of electrodiagnostic studies (EDSs) and symptoms using EDS criteria varied across a range of cutpoints and compared with symptoms in both ≥1 and ≥2 median nerve–served digits. DESIGN: Pooled data from 5 prospective cohorts. SETTING: Hand-intensive industrial settings, including manufacturing, assembly, production, service, construction, and health care. PARTICIPANTS: Employed, working-age participants who are able to provide consent and undergo EDS testing (N=3130). INTERVENTIONS: None. MAIN OUTCOME MEASURES: CTS prevalence was estimated while varying the thresholds for median sensory latency, median motor latency, and transcarpal delta latency difference. EDS criteria examined included the following: median sensory latency of 3.3 to 4.1 milliseconds, median motor latency of 4.1 to 4.9 milliseconds, and median-ulnar sensory difference of 0.4 to 1.2 milliseconds. EDS criteria were combined with symptoms in ≥1 or ≥2 median nerve–served digits. EDS criteria from other published studies were applied to allow for comparison. RESULTS: CTS prevalence ranged from 6.3% to 11.7%. CTS prevalence estimates changed most per millisecond of sensory latency compared with motor latency or transcarpal delta. CTS prevalence decreased by 0.9% to 2.0% if the criteria required symptoms in 2 digits instead of 1. CONCLUSIONS: There are meaningful differences in CTS prevalence when different EDS criteria are applied. The digital sensory latency criteria result in the largest variance in prevalence

    Thiolated tRNAS of Trypanosoma brucei are imported into mitochondria and dethiolated after import

    No full text
    All mitochondrial tRNAs in Trypanosoma brucei derive from cytosolic tRNAs that are in part imported into mitochondria. Some trypanosomal tRNAs are thiolated in a compartment-specific manner. We have identified three proteins required for the thio modification of cytosolic tRNA(Gln), tRNA(Glu), and tRNA(Lys). RNA interference-mediated ablation of these proteins results in the cytosolic accumulation non-thio-modified tRNAs but does not increase their import. Moreover, in vitro import experiments showed that both thio-modified and non-thio-modified tRNA(Glu) can efficiently be imported into mitochondria. These results indicate that unlike previously suggested the cytosol-specific thio modifications do not function as antideterminants for mitochondrial tRNA import. Consistent with these results we showed by using inducible expression of a tagged tRNA(Glu) that it is mainly the thiolated form that is imported in vivo. Unexpectedly, the imported tRNA becomes dethiolated after import, which explains why the non-thiolated form is enriched in mitochondria. Finally, we have identified two genes required for thiolation of imported tRNA(Trp) whose wobble nucleotide is subject to mitochondrial C to U editing. Interestingly, down-regulation of thiolation resulted in an increase of edited tRNA(Trp) but did not affect growth

    Species-specific Toxicity of Aristolochic Acid (AA) in vitro

    No full text
    Differences in toxicity and carcinogenicity of the nephrotoxic compound aristolochic acid between rodents and humans suggest a species-dependent mechanism of action. The goal of this study was to investigate constitutive differences in the susceptibility of renal cortex cells originating from human, rat and porcine origin in vitro. Effects of 24 and 48 h AA exposure on cell number and MTT reduction were studied. Furthermore, using the effective concentrations causing 20 and 50 % reduction (cell number), cell cycle, 3H-thymidine incorporation and DNA damage analyses were conducted. AA cytotoxicity was observed in all cell types in a time- and concentration dependent manner with species-specific differences, with porcine cells being the most sensitive. AA had a comparable effect on the cell cycle in primary human and porcine cells and the rat NRK-52E cell line following 48 h exposure, also corroborated by the reduced 3H-thymidine incorporation in NRK-52E cells. In addition, DNA unwinding, suggestive of enhanced DNA damage, was observed in primary porcine cells. These results provide an initial insight into the sensitivity and suitability of different in vitro-systems and suggest that primary porcine renal cortex cells could be a valuable in vitro-system to study AA toxicit

    Identification of a conserved <i>var </i>gene in different <i>Plasmodium falciparum</i> strains

    Get PDF
    Background: The multicopy var gene family of Plasmodium falciparum is of crucial importance for pathogenesis and antigenic variation. So far only var2csa, the var gene responsible for placental malaria, was found to be highly conserved among all P. falciparum strains. Here, a new conserved 3D7 var gene (PF3D7_0617400) is identified in several field isolates. Methods: DNA sequencing, transcriptional analysis, Cluster of Differentiation (CD) 36-receptor binding, indirect immunofluorescence with PF3D7_0617400-antibodies and quantification of surface reactivity against semi-immune sera were used to characterize an NF54 clone and a Gabonese field isolate clone (MOA C3) transcribing the gene. A population of 714 whole genome sequenced parasites was analysed to characterize the conservation of the locus in African and Asian isolates. The genetic diversity of two var2csa fragments was compared with the genetic diversity of 57 microsatellites fragments in field isolates. Results: PFGA01_060022400 was identified in a Gabonese parasite isolate (MOA) from a chronic infection and found to be 99% identical with PF3D7_0617400 of the 3D7 genome strain. Transcriptional analysis and immunofluorescence showed expression of the gene in an NF54 and a MOA clone but CD36 binding assays and surface reactivity to semi-immune sera differed markedly in the two clones. Long-read Pacific bioscience whole genome sequencing showed that PFGA01_060022400 is located in the internal cluster of chromosome 6. The full length PFGA01_060022400 was detected in 36 of 714 P. falciparum isolates and 500 bp fragments were identified in more than 100 isolates. var2csa was in parts highly conserved (He = 0) but in other parts as variable (He = 0.86) as the 57 microsatellites markers (He = 0.8). Conclusions: Individual var gene sequences exhibit conservation in the global parasite population suggesting that purifying selection may limit overall genetic diversity of some var genes. Notably, field and laboratory isolates expressing the same var gene exhibit markedly different phenotypes
    corecore