4,550 research outputs found
The Rhetorical Goddess: A Feminist Perspective on Women in Magic
Although female magicians have existed since the rise of entertainment magic, women have faced difficulty in entering the âfraternityâ of the magic community. As an art form largely based around persuasion, it is useful to study the performance of magic as a text. It is additionally useful to study female magicians within this context of rhetoric. Not only will examining the rhetoric of female magicians provide insights on the rhetoric of women in this unique arena, but also of women in a historically gendered and underrepresented field. Research into this area may disclose other details regarding the communicative differences between women and men and how communication is adapted within a gendered communication paradigm
Gauge invariance in two-particle scattering
It is shown how gauge invariance is obtained for the coupling of a photon to
a two-body state described by the solution of the Bethe-Salpeter equation. This
is illustrated both for a complex scalar field theory and for interaction
kernels derived from chiral effective Lagrangians.Comment: 16 pages, 2 figures, references added and commented o
Post-training load-related changes of auditory working memory: An EEG study
Working memory (WM) refers to the temporary retention and manipulation of information, and its capacity is highly susceptible to training. Yet, the neural mechanisms that allow for increased performance under demanding conditions are not fully understood. We expected that post-training efficiency in WM performance modulates neural processing during high load tasks. We tested this hypothesis, using electroencephalography (EEG) (N = 39), by comparing source space spectral power of healthy adults performing low and high load auditory WM tasks. Prior to the assessment, participants either underwent a modality-specific auditory WM training, or a modality-irrelevant tactile WM training, or were not trained (active control). After a modality-specific training participants showed higher behavioral performance, compared to the control. EEG data analysis revealed general effects of WM load, across all training groups, in the theta-, alpha-, and beta-frequency bands. With increased load theta-band power increased over frontal, and decreased over parietal areas. Centro-parietal alpha-band power and central beta-band power decreased with load. Interestingly, in the high load condition a tendency toward reduced beta-band power in the right medial temporal lobe was observed in the modality-specific WM training group compared to the modality-irrelevant and active control groups. Our finding that WM processing during the high load condition changed after modality-specific WM training, showing reduced beta-band activity in voice-selective regions, possibly indicates a more efficient maintenance of task-relevant stimuli. The general load effects suggest that WM performance at high load demands involves complementary mechanisms, combining a strengthening of task-relevant and a suppression of task-irrelevant processing
Modeling of ultrasonic processes utilizing a generic software framework
Modeling of ultrasonic processes is typically characterized by a high degree of complexity. Different domains and size scales must be regarded, so that it is rather difficult to build up a single detailed overall model. Developing partial models is a common approach to overcome this difficulty. In this paper a generic but simple software framework is presented which allows to coupe arbitrary partial models by slave modules with well-defined interfaces and a master module for coordination. Two examples are given to present the developed framework. The first one is the parameterization of a load model for ultrasonically-induced cavitation. The piezoelectric oscillator, its mounting, and the process load are described individually by partial models. These partial models then are coupled using the framework. The load model is composed of spring-damper-elements which are parameterized by experimental results. In the second example, the ideal mounting position for an oscillator utilized in ultrasonic assisted machining of stone is determined. Partial models for the ultrasonic oscillator, its mounting, the simplified contact process, and the workpiece's material characteristics are presented. For both applications input and output variables are defined to meet the requirements of the framework's interface.DF
- âŠ