26 research outputs found

    Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma (OS) is the most common primary bone tumour in children and young adults. Despite improved prognosis, metastatic or relapsed OS remains largely incurable and no significant improvement has been observed in the last 20 years. Therefore, the search for alternative agents in OS is mandatory.</p> <p>Results</p> <p>We investigated phospho-ERK 1/2, MCL-1, and phospho-Ezrin/Radixin/Moesin (P-ERM) as potential therapeutic targets in OS. Activation of these pathways was shown by immunohistochemistry in about 70% of cases and in all OS cell lines analyzed. Mutational analysis revealed no activating mutations in KRAS whereas BRAF gene was found to be mutated in 4/30 OS samples from patients. Based on these results we tested the multi-kinase inhibitor sorafenib (BAY 43-9006) in preclinical models of OS. Sorafenib inhibited OS cell line proliferation, induced apoptosis and downregulated P-ERK1/2, MCL-1, and P-ERM in a dose-dependent manner. The dephosphorylation of ERM was not due to ERK inhibition. The downregulation of MCL-1 led to an increase in apoptosis in OS cell lines. In chick embryo chorioallantoic membranes, OS supernatants induced angiogenesis, which was blocked by sorafenib and it was also shown that sorafenib reduced VEGF and MMP2 production. In addition, sorafenib treatment dramatically reduced tumour volume of OS xenografts and lung metastasis in SCID mice.</p> <p>Conclusion</p> <p>In conclusion, ERK1/2, MCL-1 and ERM pathways are shown to be active in OS. Sorafenib is able to inhibit their signal transduction, both <it>in vitro </it>and <it>in vivo</it>, displaying anti-tumoural activity, anti-angiogenic effects, and reducing metastatic colony formation in lungs. These data support the testing of sorafenib as a potential therapeutic option in metastatic or relapsed OS patients unresponsive to standard treatments.</p

    Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activating mutations of the epidermal growth factor receptor (<it>EGFR</it>) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease.</p> <p>Methods</p> <p>Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples.</p> <p>Results</p> <p>EGFR protein overexpression (EGFR<sub>high</sub>) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFR<sub>high </sub>tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFR<sub>low</sub>). Microarray analysis did not reveal any differences in gene expression between EGFR<sub>high </sub>and EGFR<sub>low </sub>tumours. Conversely, in EGFR<sub>high </sub>tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFR<sub>high </sub>(n=3) and mutated/EGFR<sub>low </sub>tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression.</p> <p>Conclusions</p> <p>Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.</p

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR &lt; 60 mL/min/1.73 m2) or eGFR reduction &gt; 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR &lt; 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR &gt; 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Optimized ITO-free tri-layer electrode for organic solar cells

    No full text
    International audienceThe optical properties of ZnO/Ag/ZnO (ZAZ) multilayer structures were numerically modeled and calculated by a FDTD method. Such tri-layers were also manufactured using an ion beam sputtering plant. A good agreement is obtained between modelizations and realizations. The impact of the oxide thicknesses on the optical properties of the ZAZ structures were experimentally and numerically investigated, and allow us to adjust the spectral position of the transmission maximum. The transmission of these structures is optimized up to around 74%, on the whole absorption spectral range of the photoactive P3HT:PCBM bulk heterojunction. The best electrode design is glass/ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm), which presents a sheet resistance of 7 Ω/□. The optimized ZAZ structure was successfully integrated in an organic solar cell as anode. A photovoltaic efficiency of 2.58% is obtained and is compared to an organic solar cell integrating a traditional ITO anode with an efficiency of 2.99%. Numerical calculations of the intrinsic absorption inside each layer of the organic solar cells are performed. Alternative ITO-free electrodes for organic solar cells are demonstrated

    Flexible inverted polymer solar cells with an indium-free tri-layer cathode

    No full text
    International audienceIndium tin oxide (ITO)-free inverted polymer solar cells (PSCs) have been fabricated without the need of an additional electron transport layer. The indium-free transparent electrode consists of a tri-layer stack ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm) deposited on glass and plastic substrates via ion-beam sputtering. The tri-layer electrodes exhibit similar physical properties to its ITO counterpart, specifically yielding high transmittance and low resistivity (76.5% T at 550 nm, Rsq of 8 Ω/◻) on plastic substrates. The novel tri-layer electrode allows for the fabrication of inverted PSCs without the additional ZnO interfacial layer commonly deposited between ITO and the photoactive layer. This allows for the preparation of thinner plastic solar cells using less material than conventional architectures. Initial studies involving the newly realized architecture (tri-layer electrode/P3HT:PCBM/PEDOT:PSS/Ag) have shown great promise for the transition from ITO to other viable electrodes in organic electronics
    corecore