114 research outputs found

    Shells of crystal field symmetries evidenced in oxide nano-crystals

    Full text link
    By the use of a point charge model based on the Judd-Ofelt transition theory, the luminescence from Eu3+ ions embedded in Gd2O3 clusters is calculated and compared to the experimental data. The main result of the numerical study is that without invoking any other mechanisms such as crystal disorder, the pure geometrical argument of the symmetry breaking induced by the particle surface has influence on the energy level splitting. The modifications are also predicted to be observable in realistic conditions where unavoidable size dispersion has to be taken into account. The emission spectrum results from the contribution of three distinct regions, a cluster core, a cluster shell and a very surface, the latter being almost completely quenched in realistic conditions. Eventually, by detailing the spectra of the ions embedded at different positions in the cluster we get an estimate of about 0.5 nm for the extent of the crystal field induced Stark effect. Due to the similarity between Y2O3 and Gd2O3, these results apply also to Eu3+ doped Y2O3 nanoparticles

    Oriented Attachment of ZnO Nanocrystals

    Full text link
    Self-organization of nanoparticles is a major issue to synthesize mesoscopic structures. Among the possible mechanisms leading to self-organization, the oriented attachment is efficient yet not completely understood. We investigate here the oriented attachment process of ZnO nanocrystals preformed in the gas phase. During the deposition in high vacuum, about 60% of the particles, which are uncapped, form larger crystals through oriented attachment. In the present conditions of deposition, no selective direction for the oriented attachment is noticed. To probe the driving force of the oriented attachment, and more specifically the possible influence of the dipolar interaction between particles, we have deposited the same nanocrystals in the presence of a constant electric field. The expected effect was to enhance the fraction of domains resulting from the oriented attachment due to the increased interaction of the particle dipoles with the electric field. The multiscale analytical and statistical analysis (TEM coupled to XRD) shows no significant influence of the electric field on the organization of the particles. We therefore conclude that the dipolar interaction between nanocrystals is not the prominent driving force in the process. Consequently, we argue, in accordance with recent theoretical and experimental investigations, that the surface reduction, possibly driven by Coulombic interaction, may be the major mechanism for the oriented attachment process

    Guest displacement in silicon clathrates

    Get PDF
    We study both theoretically and experimentally the structure of the doped silicon clathrate II NaxSi34. We find that contrary to published works, the sodium atoms do not retain the T-d symmetry inside the Si-28 cages and move about 1 A away from the center of the cage. This displacement, in conjunction with that of a sodium atom in an adjacent Si-28 cage, leads to a "dimerization" of sodium atoms. As a consequence, Rietveld refinements of x-ray diffraction spectra and transport, vibrational, and electronic properties must be revisited

    Sondes actives en champ proche pour la plasmonique et la plasmonique quantique

    Get PDF
    Les plasmons de surface (SP) sont des modes du champ électromagnétique confinés à l'interface entre un métal et un diélectrique. De par leur nature hybride, les SP permettent de concentrer et manipuler la lumière à des échelles sub-longueur d'onde. Ces propriétés sans précédent suscitent un grand intérêt, en particulier pour le transport et le traitement de l'information quantique mais aussi pour le contrôle de l'émission spontanée d'émetteurs fluorescents. Les études présentées dans ce manuscrit s'intéressent au couplage de nanostructures plasmoniques avec des nanoparticules luminescentes. L'outil utilisé est un microscope optique en champ proche (SNOM) dans lequel la nano-source de lumière est un nano-objet fluorescent attaché en bout de pointe (sonde active). Cette technique permet à la fois d'augmenter la résolution théorique accessible en SNOM mais aussi de positionner la sonde avec une précision nanométrique et de l'exciter directement grâce à la lumière laser injectée dans la fibre optique. En utilisant uniquement la lumière émise par l'objet, ces pointes ouvrent la voie à des études originales en nano-optique et en plasmonique. Dans ce travail de thèse, deux aspects distincts ont été abordés. D'une part, nous avons étudié les propriétés des plasmons de surface dans le régime de la plasmonique quantique en utilisant pour cela une sonde active fabriquée à base d'un émetteur de photons uniques, le centre NV (nitrogen-vacancy) contenu dans les nano-diamants. Les résultats fondamentaux obtenus sur ce système permettent d'envisager de nombreuses expériences en plasmonique quantique. D'autre part, le travail de développement des sondes actives à base de nanocristaux de YAG (yttrium-aluminum garnet) dopés au cérium a été poursuivi. Ces sondes nous ont permis de démarrer de nouvelles études sur les résonances plasmoniques localisées de particules colloïdales en or.Surface plasmons (SPs) are modes of the electromagnetic field confined at the interface between a metal and a dielectric. Due to their hybrid nature, the SPs can be used to concentrate and handle light on subwavelength scales. These unprecedented properties draw great interest, in particular for quantum information transport and processing and also for the control of spontaneous emission of fluorescent emitters. The studies presented in this manuscript report the coupling of plasmonic nanostructures with luminescent nanoparticles. The tool we use is a scanning near-field optical microscope (SNOM), in which the nano-source of light is a fluorescent nano-object attached at the end of the probe (active tip). This technique allows not only to reach a better optical resolution in SNOM but also to position the nano-emitter with a nanometre precision and to excite it directly thanks to the laser light injected into the optical fibre. By using only the light emitted by the object, these tips open the way to original studies in nano-optics and plasmonics. In this work, two distinct aspects were studied. First, we studied the properties of the SPs in the quantum plasmonics regime. For this purpose, we used an active tip based on single photons emitters which are the NV centres (nitrogen-vacancy centre) hosted in nanodiamonds. The fundamental results obtained on this system make it possible to consider many other quantum plasmonics experiments. In addition, a different type of active tips based on Cerium-doped YAG (yttrium-aluminum garnet) nanoparticules was developed. These probes allow us to start new studies on localised plasmonic resonances in colloidal gold particles.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Superconductivity in doped sp3 semiconductors: The case of the clathrates

    Get PDF
    We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba-8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant lambda calculated from perturbative density functional theory. Further, the study of I-8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp(3) silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C-60

    YAG nano-light sources with high Ce concentration

    Full text link
    We investigate the luminescence properties of 10 nm YAG nanoparticles doped with Ce ions at 0.2%, 4% and 13% that are designed as active probes for Scanning Near field Optical Microscopy. They are produced by a physical method without any subsequent treatment, which is imposed by the desired application. The structural analysis reveals the amorphous nature of the particles, which we relate to some compositional defect as indicated by the elemental analysis. The optimum emission is obtained with a doping level of 4%. The emission of the YAG nanoparticles doped at 0.2% is strongly perturbed by the crystalline disorder whereas the 13% doped particles hardly exhibit any luminescence. In the latter case, the presence of Ce4+ ions is confirmed, indicating that the Ce concentration is too high to be incorporated efficiently in YAG nanoparticles in the trivalent state. By a unique procedure combining cathodoluminescence and Rutherford backscattering spectrometry, we demonstrate that the enhancement of the particles luminescence yield is not proportional to the doping concentration, the emission enhancement being larger than the Ce concentration increase. Time-resolved photoluminescence reveals the presence of quenching centres likely related to the crystalline disorder as well as the presence of two distinct Ce ions populations. Eventually, nano-cathodoluminescence indicates that the emission and therefore the distribution of the doping Ce ions and of the defects are homogeneous

    Nanocharacterization of materials for energy

    No full text
    16- 18 juinInternational audienceThe characterization of materials for energy is not in essence different from the characterization of materials developed for others issues. Nevertheless, as for other domains of applications, the optimization of materials for energy requires the understanding of processes which occur at the nanoscale. These can be chemical processes (interaction of ions and nanostructures in Li batteries, in photocatalytic systems…), electrical processes (movements and trapping of charges at atomic sites in NEMS and mechanical energy harvesters), optical processes (light generation or conversion in LEDs or PV cells based on nanostructures) or even thermal processes (flux control at atomic interfaces). This need can now be satisfied thanks to the recent developments of usual characterization techniques. In the presentation, we will review some of the most recent achievements regarding characterization at the nanoscale of materials designed for energy purposes. The focus will be made on the contribution specific to the nanoscale. In order to address the relevant issues, the presentation will be organized according to the physical and chemical properties to probe, namely structural, chemical, electronic, optical and thermal phenomen

    Effets structuraux, électroniques et optiques dans des nano-objets

    No full text
    Un domaine de la matière condensée en fort développement depuis plusieurs années est celui des nanomatériaux. L'intérêt d'étudier les matériaux à l'échelle nanométrique réside dans le fait que de nombreux phénomènes physico-chimiques ont une grandeur caractéristique de l'ordre du nanomètre (ou de dizaines de nanomètres). Ainsi en est-il, entre autres, de la longueur d'onde de la lumière visible (~400-800 nm), de l'extension des fonctions d'onde d'états électroniques délocalisés. Par conséquent, réduire la taille de matériaux jusqu'à quelques nanomètres ou quelques centaines de nanomètres permet de modifier et de contrôler de nombreuses propriétés. Les phases nanostructurées peuvent se comporter alors différemment à la fois de la phase massive et de la phase moléculaire.Le terme nanomatériaux recouvre une grande diversité de phénomènes, et de matériaux. Il est impossible de citer exhaustivement tous les domaines concernés, depuis les particules à propriétés catalytiques jusqu'aux nanotubes de carbones, en passant par les particules luminescentes, l'électronique de spin ou encore les nanocomposites. L'engouement pour les nanomatériaux s'explique aussi comme conséquence naturelle de la miniaturisation continue des dispositifs de certaines industries (microélectronique notamment). De manière complémentaire, l'élaboration de molécules toujours plus grosses et complexes aboutit à des particules nanométriques, de sorte que la matière à l'échelle du nanomètre peut être abordée aussi bien comme une réduction d'échelle de systèmes micrométriques ou comme une augmentation d'échelle de systèmes moléculaires . La première approche est plus immédiatement exploitable. Cependant, la seconde approche, fidèle au rêve du scientifique démiurge, créant de nouveaux matériaux par une organisation contrôlée des briques élémentaires nanométriques parfaitement définies, semble à long terme, plus prometteuse. Au cours de mon parcours en recherche, depuis le début de ma thèse en novembre 1996, j'ai eu l'opportunité de m'investir dans plusieurs domaines des nanomatériaux, selon l'une ou l'autre de ces deux approches. De formation ingénieur généraliste (École Centrale de Lyon), j'ai choisi de m'initier au métier de chercheur en effectuant une thèse de doctorat dans le domaine du confinement optique à l'échelle nanométrique. Plus particulièrement, ce travail concernait la réalisation et la caractérisation de microcavités optiques à base de semi-conducteurs organiques. Ce travail s'est déroulé sous la direction du professeur J. Joseph, dans le Laboratoire d'Électronique, d'Optique et de Microsystèmes, de l'École Centrale de Lyon, dans le cadre d'une bourse DRET-CNRS.À la fin de ma thèse, j'ai souhaité développer ma connaissance des semi-conducteurs organiques. En particulier, je voulais aborder d'autres aspects, notamment électronique, tout en mettant à profit les compétences acquises au cours de ma thèse dans le domaine de l'optique. Du 01/08/1999 au 30/08/2000, par contrat du Ministère de la Recherche de la Confédération Helvétique, j'ai occupé un poste de chercheur-enseignant à l'École Polytechnique Fédérale de Lausanne, dans l'équipe du professeur L. Zuppiroli. Il s'agit d'une équipe pluridisciplinaire, mêlant physiciens, chimistes et industriels, dont la compétence est reconnue dans le domaine des matériaux organiques semi-conducteurs. L'étude à laquelle je me suis consacré a visé à développer la compréhension et la modélisation des phénomènes d'injection et de transport des charges, et l'émission de lumière qui en résulte dans ces matériaux. La particularité de cette étude était qu'elle repose sur une description à l'échelle nanométrique, caractéristique des molécules constituant les dispositifs, pour rendre compte des propriétés macroscopiques de ces derniers.Depuis mon intégration au LPMCN en qualité de Maître de Conférence (septembre 2000), mon activité de recherche au sein du groupe « agrégats et nanostructures» porte sur la physique des agrégats, d'une part de matériaux covalents et d'autre part de matériaux ioniques. La méthode originale de synthèse d'agrégats et de films nanostructurés (LECBD, Low Energy Cluster Beam Deposition Technique), développée par notre laboratoire en collaboration avec le Laboratoire de Spectroscopie Ionique et Moléculaire (LASIM) et l'Institut de Recherche sur la Catalyse (IRC) depuis plus de dix ans, offre de grandes potentialités pour l'étude des agrégats nanométriques covalents et ioniques. Elle permet d'atteindre des tailles suffisamment petites (quelques nanomètres de diamètre) pour produire des réarrangements de structures et ainsi, par exemple, synthétiser des matériaux cages covalents (type fullerènes). Les conditions de condensation du plasma d'agrégats, fortement hors équilibre thermodynamique (taux de trempe de l'ordre de 1010 K/s) nous permettent de sonder des phases exotiques de la matière. Enfin, cette méthode nous donne accès à la fabrication de composés de stoechiométrie contrôlée pour la plupart des classes de matériaux. En particulier, pour les systèmes d'oxydes ioniques, contrairement aux synthèses par chimie douce, nous pouvons contrôler le taux de dopage et choisir à volonté la nature du dopant luminescent à introduire en substitution dans la matrice oxyde. Il s'agit donc d'une technique d'une grande souplesse et qui permet, pour ma part, d'envisager l'étude des systèmes covalents et ioniques de manière originale. Les agrégats covalents sont essentiellement composés d'éléments semiconducteurs en phase massive (Si, C, Ge, alliages...). Ces matériaux, en raison de leur intérêt évident pour les applications électroniques et dans le mouvement général de la technologie visant à réduire systématiquement les dimensions des composants, sont étudiés à l'échelle nanométrique. À cette taille, ils offrent des modifications spectaculaires de leur propriétés électroniques (transition semi-conducteur/isolant), optiques (apparition de lumière dans Si et Ge qui ne luminescent pas à l'état massif) et structurelles (formation de structures cages). Il y a donc un intérêt tant fondamental qu'appliqué à s'intéresser à de tels matériaux à l'échelle nanométrique. L'étude des oxydes ioniques, que j'ai initiée plus récemment, est aussi stimulée par des intérêts fondamentaux et appliqués. Du point de vue des applications, les oxydes à grand gap font l'objet de recherches intenses en vue d'utilisation comme barrière isolante ultrafine dans les dispositifs électroniques. Ce sont aussi des matériaux généralement chimiquement réactifs et qui dans certains cas peuvent être des luminophores. D'un point de vue fondamental, le comportement de la liaison ionique à l'échelle nanométrique n'a été que peu étudié, principalement en raison de la grande réactivité chimique des matériaux ioniques. Le fait de disposer d'un environnement ultravide pour nos bancs d'expériences nous offre un grand avantage pour la compréhension de ces systèmes. De manière générale, notre approche vise en premier lieu à réaliser et étudier des nanoparticules de référence, parfaitement contrôlées et protégées. En second lieu, elle vise à organiser ces particules sur des substrats choisis pour former des matériaux et dispositifs nanostructurés à vocation optique ou électronique.Les thématiques évoquées ci-dessus sont reprises dans ce mémoire de la manière suivante. Le chapitre I introduit brièvement les matériaux organiques semiconducteurs et les dispositifs électroluminescents qui les exploitent. Il présente aussi mes travaux de modélisation en vue de l'optimisation électronique de tels dispositifs. Nous y insistons sur la nécessité d'une description nanométrique, caractéristique des matériaux décrits, en vue d'une compréhension macroscopique. Le chapitre II se concentre sur l'optimisation optique de ces dispositifs. Cet aspect est généralement complémentaire de l'optimisation électronique. Nous y traitons, de manière plus générale, de la modification de l'émission spontanée d'émetteurs à spectre large par des systèmes confinant la lumière selon une ou deux directions (microcavités) sur des dimensions nanométriques.Le chapitre III synthétise mes activités dans le domaine des agrégats cages covalents. Deux classes complémentaires de matériaux cages sont évoquées au travers de la thématique du dopage. Plus particulièrement, nous illustrons l'intérêt du dopage pour des films issus du dépôt d'agrégats et pour des films de cristaux cages covalents (les clathrates). Ce chapitre marque un changement d'approche par rapport aux chapitres précédents. Contrairement aux études sur les matériaux organiques conjugués qui s'inscrivent dans une approche « top-down », les travaux des chapitres III et IV suivent une approche « bottom-up », partant d'agrégats nanométriques préformés comme briques de constructions de matériaux nanostructurés.Le chapitre IV présente une nouvelle thématique que je développe au sein de notre groupe et qui porte sur les agrégats nanométriques d'oxydes iono-covalents. Nous présentons les premiers résultats concernant le comportement de la liaison ionique dans ces matériaux à très faible taille ainsi que ses effets sur la structure, les propriétés électroniques et optiques de ces nano-objets.Le principal fil rouge que l'on trouvera dans ces pages est mon intérêt pour les effets fondamentaux de l'échelle nanométrique sur les propriétés structurales et optiques. C'est la raison pour laquelle mes travaux de post-doctorat (chapitre I) peuvent apparaître moins développés que mes travaux de thèse (chapitre II) ou que mes travaux récents (chapitres III et IV). Cette répartition est intentionnelle. En me basant sur l'expérience acquise, tant durant ma thèse qu'au sein du LPMCN, ainsi que sur l'environnement local actif dans le domaine des nanosciences, j'envisage de développer mes activités de recherches à court et moyen terme vers les systèmes et applications pour la nanooptique, avec en particulier, l'élaboration de nano-sources lumineuses originales selon les deux axes précédemment mentionnés, à savoir les nano-agrégats covalents d'une part et d'oxydes iono-covalents d'autre part. Ceci fait l'objet du chapitre V

    Doping of ZnO nanocrystals, Tuning of plasmonic properties

    No full text
    International audienc
    • …
    corecore