40 research outputs found

    Study on differential expression of 1-aminocyclopropane-1-carboxylic acid oxidase genes in table grape cv. Thompson Seedless

    Get PDF
    As a consequence of the non-climacteric status of grapes (Vitis vinifera), ethylene biosynthesis and signal transduction have scarcely been studied in this fruit. In spite this drawback, the available information suggests a role for ethylene in ripening grape berries. In this work, we report the identification of three homologous genes that encode 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), a key component of ethylene biosynthesis. A comparison of protein sequences revealed that all three VvACOs harbor a 2OG-Fe(II) oxygenase domain, which is typical of the ACO gene family; however, VvACO1 showed a higher amino acid sequence homology with VvACO2 than with VvACO3. The expression pattern of VvACOs and the effect of exogenous ethylene on their transcript accumulation were evaluated during table grape berry development in the “Thompson Seedless” cultivar. A peak in VvACO1 transcript accumulation levels was registered around veraison that was 4-fold higher than at harvest, and this peak was confirmed during a second season in grapes that were harvested from three different vineyards. An enhancement in ethylene production and VvACO genes transcript levels was observed in grapes sprayed with ethephon during berry development. However, VvACO1 transcripts reached the highest accumulation earlier than VvACO2 and VvACO3. Altogether, these data confirmed that ethylene may have a role in some aspects of the grape ripening process, and they also highlighted the potential use of some VvACO genes as molecular markers for identifying grape veraison stages in grapes

    The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism

    Get PDF
    IndexaciĂłn: Web of ScienceCherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways.http://www.mdpi.com/1420-3049/21/5/39

    Proteomic and low-polar metabolite profiling reveal unique dynamics in fatty acid metabolism during flower and berry development of table grapes

    Get PDF
    Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on ‘Thompson Seedless’ berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid ÎČ-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality

    Cell wall calcium and hemicellulose have a role in the fruit firmness during storage of blueberry (Vaccinium spp.)

    Get PDF
    IndexaciĂłn ScopusThe firmness of blueberry is one of its most significant quality attributes. Modifications in the composition of the cell wall have been associated with changes in the fruit firmness. In this work, cell wall components and calcium concentration in two blueberry cultivars with contrasting firmness phenotypes were evaluated at harvest and 30 days cold storage (0◩ C). High performance anion-exchange chromatography with pulse amperometric detector (HPAEC-PAD) analysis was performed using the “Emerald” (firmer) and “Jewel” (softer) blueberry cultivars, showing increased glucose in the firmer cultivar after cold storage. Moreover, the LM15 antibody, which recognizes xyloglucan domains, displayed an increased signal in the Emerald cultivar after 30 d cold storage. Additionally, the antibody 2F4, recognizing a homogalacturonan calcium-binding domain, showed a greater signal in the firmer Emerald blueberries, which correlates with a higher calcium concentration in the cell wall. These findings suggest that xyloglucan metabolism and a higher concentration of cell wall calcium influenced the firmness of the blueberry fruit. These results open new perspectives regarding the role of cell wall components as xyloglucans and calcium in blueberry firmness. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2223-7747/10/3/55

    Long-term effects of evolocumab in participants with HIV and dyslipidemia: results from the open-label extension period

    Get PDF
    Objectives: People with HIV (PWH) are at an increased risk of atherosclerotic cardiovascular disease. Suboptimal responses to statin therapy in PWH may result from antiretroviral therapies (ARTs). This open-label extension study aimed to evaluate the long-term safety and efficacy of evolocumab up to 52\u200aweeks in PWH. Design: This final analysis of a multinational, placebo-controlled, double-blind, randomized phase 3 trial evaluated the effect of monthly subcutaneous evolocumab 420\u200amg on low-density lipoprotein cholesterol (LDL-C) during the open-label period (OLP) following 24\u200aweeks of double-blind period in PWH with hypercholesterolemia/mixed dyslipidemia. All participants enrolled had elevated LDL-C or nonhigh-density lipoprotein cholesterol (non-HDL-C) and were on stable maximally tolerated statin and stable ART. Methods: Efficacy was assessed by percentage change from baseline in LDL-C, triglycerides, and atherogenic lipoproteins. Treatment-emergent adverse events (TEAEs) were examined. Results: Of the 467 participants randomized in the double-blind period, 451 (96.6%) received at least one dose of evolocumab during the OLP (mean age of 56.4\u200ayears, 82.5% male, mean duration with HIV of 17.4\u200ayears). By the end of the 52-week OLP, the overall mean (SD) percentage change in LDL-C from baseline was -57.8% (22.8%). Evolocumab also reduced triglycerides, atherogenic lipid parameters (non-HDL-C, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, and lipoprotein[a]), and increased HDL-C. TEAEs were similar between placebo and evolocumab during the OLP. Conclusion: Long-term administration of evolocumab lowered LDL-C and non-HDL-C, allowing more PWH to achieve recommended lipid goals with no serious adverse events. Trail registration: NCT02833844. Video abstract: http://links.lww.com/QAD/C441

    Understanding the key preharvest factors determining ‘Packham’s Triumph’ pear heterogeneity and impact in superficial scald development and control

    No full text
    Although superficial scald (SS) is well characterized on apples, there is still few information regarding the influence that initial fruit’s maturity heterogeneity may have on the development of this disorder on pears. In this study we aimed to understand the effect of growing season and site, harvest maturity, and their interaction with postharvest treatments on superficial scald development. Pears (Pyrus communis L.) cv ‘Packham’s Triumph’ were picked during three consecutive seasons at three harvest maturities (H1, H2, H3) from different commercial orchards. Different SS control treatments (DPA vs. 1-MCP; season # 2) and storage scenarios (RA, CA and RA + stepwise cooling (SWC); season # 3) were evaluated. Bioclimatic indices, superficial scald incidence, maturity indices and biochemical analysis associated with SS were carried out at harvest and periodically postharvest in all treatments. In general, bioclimatic indexes (GDA and HL10) were poorly correlated with SS incidence. Only in season #1, harvest maturity was positively correlated with SS after 140 and 180 d into storage (rs = 0.621* and 0.620*, respectively), the more mature fruit being more sensitive. The opposite was observed in season #3, and no pattern in season #2. There was a good and positive correlation between CTols dynamic (ήCTols/ήt) and SS development, with variation between seasons. DPA and 1-MCP effectively reduced SS up to 180 d regardless of years and orchard location. In contrast, the beneficial effect of CA storage was orchard dependent and SWC strategy did not control SS and affected fruit quality. Collectively our results suggest that initial fruit heterogeneity at harvest is an important factor that modulate SS development in ‘Packham triumph pears. Climatic and fruit maturity indexes are not reliable for a multi-year prediction of SS development. In contrast to CA storage that reduced the disorder in an orchard dependent manner, 1-MCP and DPA treatments effectively controlled SS independently of initial fruit heterogeneity.info:eu-repo/semantics/acceptedVersio

    CHARACTERIZATION OF SUGARS AND ORGANIC ACIDS IN COMMERCIAL VARIETIES OF TABLE GRAPES

    No full text
    Flavor composition has been defined as a complex attribute of fruit quality, in which the mix of sugars, acids and volatiles play a primary role. In table grapes ( Vitis vinifera L.), sweetness and sourness are the most important flavor attributes for fresh consumption. However, most of the studies available have been performed on wine grapes, which are grown, cultured and processed differently to table grapes. Therefore, the objective of this work was to characterize the changes in sugars and organic acids during the development of 'Thompson Seedless', 'Red Globe' and 'Crimson Seedless' grown under the same agroclimatic conditions. Each variety was sampled weekly from 2 wk before véraison until commercial harvest. Sugars and organic acids were quantified by high performance liquid chromatography (HPLC) equipped with an evaporative light scattering detector (ELSD) and ultra violet detector, respectively. The ranges of acid and sugars concentrations found in grapes were as follows: tartaric acid, 1.28-7.45 g L-1; malic acid, 0.38-29.92 g L-1, citric acid traces-1.03 g L-1; fructose, 0.15-8.74 g (sugar) 100 g(grape)-1; glucose, 0.19-8.71 g (sugar) 100 g(grape)-1 and sucrose 0.02-0.91 g (sugar) 100 g(grape)-1. Among sugars, glucose was the most abundant one in early stages and then it decreased until the harvest period, when the amount of fructose and glucose converged to an average of 47% for each sugar. Despite organic acids reaching steady levels 3-4 wk before commercial harvest, there were important differences in the organic acid profiles among varieties, with 'Thompson Seedless' showing the lowest tartaric/malic acid ratio of 1.19. These differences are an important aspect in terms of overall flavor

    Do Rootstocks Influence Global Fruit Quality, Postharvest Performance and Metabolite Profiles of <i>Persea americana</i> cv. Hass?

    No full text
    The choice of rootstock has a significant impact, not only on fruit growth and development, but also on avocado fruit quality and postharvest performance. The objective of this study was to evaluate and compare attributes related to the postharvest quality of Hass avocados from “Mexicola” and “Duke 7” rootstocks grown under similar conditions. This study included two harvests: early (23–26% dry matter) and middle (>26–30% dry matter) per season for the 2016/2017 and 2017/2018 seasons and two storage conditions (regular air (RA) at 5 °C and controlled atmosphere (CA) at 4 kPa O2 and 6 kPa CO2 at 5 °C) for 55 days. The results showed significant differences in firmness, color and vascular and flesh browning between storage conditions; in addition to these last three attributes, the rootstock played an important role. The fatty acid profile did not reveal significant differences between fruit from both rootstocks. Finally, the polar metabolite profiles revealed differences only for the storage condition, not associated to the rootstock, which could affect the postharvest performance of Hass avocado fruit. This study is one of the few available showing the interaction of rootstock/Hass cultivar on fruit quality and postharvest performance

    Effects of 1-Methylcyclopropene and Controlled Atmosphere on Ethylene Synthesis and Quality Attributes of Avocado cvs. Edranol and Fuerte

    No full text
    Avocado production worldwide relies on several varieties, with “Hass” being the most commercialized; however, the available genotypes include a number of green-skin varieties with important roles in several countries. Because many technologies have already been developed in “Hass” avocado, the main objective of this study was to evaluate the effects of controlled atmosphere (CA) storage and 1-methylcyclopropene (1-MCP) application during long-term storage of “Edranol” and “Fuerte” avocados. Fruits of both varieties were harvested at two maturity stages: an early harvest close to 20–23% dry matter (DM) content and another after two months, with 22% and 32% DM content for Edranol and Fuerte, respectively. After harvest, the fruit was stored under the following conditions: (i) regular air storage (RA), (ii) CA with 4% O2 and 6% CO2, and (iii) 1-MCP applied at 300 ppm. Avocados were stored at 5°C and 85% relative humidity. Physiological and quality evaluations were performed immediately after 30 and 50 days; afterwards, the avocados were maintained at 20°C (shelf life) until they reached the ready-to-eat stage. Ethylene synthesis was assessed by measuring the transcript accumulation of the ACO and ACS genes. The two varieties showed distinct respiration and ethylene production rates during ripening, and fruit stored under CA or after application of 1-MCP showed lower respiration rates than fruit stored under RA, with the lowest rate in 1-MCP-treated avocados. ACS and ACO transcript levels were also lower under both conditions. CA and 1-MCP were very effective tools for extending storage life mainly by reducing the fruit softening rate and the incidence of pulp disorders in both varieties, and interestingly, these techniques did not severely affect the days to reach the ready-to-eat stage. Therefore, the use of CA and 1-MCP technologies in “Fuerte” and “Edranol” seems to be suitable for maintaining quality through 50 days of storage
    corecore