8,588 research outputs found

    Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer

    Get PDF
    In this paper we explore the application of cryogenic imaging spectrophotometers. Prototypes of this new class of detector, such as superconducting tunnel junctions (STJs) and transition edge sensors (TESs), currently deliver low resolution imaging spectrophotometry with high quantum efficiency (70-100%) and no read noise over a wide bandpass in the visible to near-infrared. In order to demonstrate their utility and the differences in observing strategy needed to maximize their scientific return, we present simulated observations of a deep extragalactic field. Using a simple analytic technique, we can estimate both the galaxy redshift and spectral type more accurately than is possible with current broadband techniques. From our simulated observations and a subsequent discussion of the expected migration path for this new technology, we illustrate the power and promise of these devices.Comment: 30 pages, 10 figures, accepted for publication in the Astronomical Journa

    Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

    Full text link
    We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 7 standard deviations. This violation is the first experiment with photons to close the detection loophole, and we demonstrate enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate secure private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.Comment: Main text: 5 pages, 2 figures, 1 table. Supplementary Information: 7 pages, 2 figure

    Discovery of a Clustered Quasar Pair at z ~ 5: Biased Peaks in Early Structure Formation

    Get PDF
    We report a discovery of a quasar at z = 4.96 +- 0.03 within a few Mpc of the quasar SDSS 0338+0021 at z = 5.02 +- 0.02. The newly found quasar has the SDSS i and z magnitudes of ~ 21.2, and an estimated absolute magnitude M_B ~ -25.2. The projected separation on the sky is 196 arcsec, and the redshift difference Delta z = 0.063 +- 0.008. The probability of finding this quasar pair by chance in the absence of clustering in this particular volume is ~ 10^-4 to 10^-3. We conclude that the two objects probably mark a large-scale structure, possibly a protocluster, at z ~ 5. This is the most distant such structure currently known. Our search in the field of 13 other QSOs at z >~ 4.8 so far has not resulted in any detections of comparable luminous QSO pairs, and it is thus not yet clear how representative is this structure at z ~ 5. However, along with the other evidence for clustering of quasars and young galaxies at somewhat lower redshifts, the observations are at least qualitatively consistent with a strong biasing of the first luminous and massive objects, in agreement with general predictions of theoretical models. More extensive searches for clustered quasars and luminous galaxies at these redshifts will provide valuable empirical constraints for our understanding of early galaxy and structure formation.Comment: Latex file, 8 pages, 3 eps figures, sty files included. To appear in the Ap

    Global simulations of tokamak microturbulence: finite-β effects and collisions

    No full text
    In this paper, we present global nonlinear gyrokinetic simulations including finite beta effects and collisions in tokamak geometry. Global electromagnetic simulations using conventional delta-f particle in cell methods are very demanding, with respect to numerical resources, in order to correctly describe the evolution of the non-adiabatic part of the electron distribution function. This difficulty has been overcome using an appropriate adjustable control variate method in the conventional delta-f scheme. Linearized inter-species and like-species collision operators have also been introduced in the model. The inclusion of the collisional dynamics makes it possible to carry out simulations of microturbulence starting from a global neoclassical equilibrium and to study the effect of collisions on the transport induced by electrostatic microinstabilities

    B-type defects in Landau-Ginzburg models

    Full text link
    We consider Landau-Ginzburg models with possibly different superpotentials glued together along one-dimensional defect lines. Defects preserving B-type supersymmetry can be represented by matrix factorisations of the difference of the superpotentials. The composition of these defects and their action on B-type boundary conditions is described in this framework. The cases of Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in detail, and the results are compared to the CFT treatment of defects in N=2 superconformal minimal models to which these Landau-Ginzburg models flow in the IR.Comment: 50 pages, 2 figure

    Extinction of the N=20 neutron-shell closure for 32Mg examined by direct mass measurements

    Full text link
    The 'island of inversion' around 32^{32}Mg is one of the most important paradigm for studying the disappearance of the stabilizing 'magic' of a shell closure. We present the first Penning-trap mass measurements of the exotic nuclides 2931^{29-31}Na and 3034^{30-34}Mg, which allow a precise determination of the empirical shell gap for 32^{32}Mg. The new value of 1.10(3) MeV is the lowest observed shell gap for any nuclide with a canonical magic number.Comment: 6 pages, 4 figures, submitted to Physical Review

    The 1986?1989 ENSO cycle in a chemical climate model

    No full text
    International audienceA pronounced ENSO cycle occurred from 1986 to 1989, accompanied by distinct dynamical and chemical anomalies in the global troposphere and stratosphere. Reproducing these effects with current climate models not only provides a model test but also contributes to our still limited understanding of ENSO's effect on stratosphere-troposphere coupling. We performed several sets of ensemble simulations with a chemical climate model (SOCOL) forced with global sea surface temperatures. Results were compared with observations and with large-ensemble simulations performed with an atmospheric general circulation model (MRF9). We focus our analysis on the extratropical stratosphere and its coupling with the troposphere. In this context, the circulation over the North Atlantic sector is particularly important. Observed differences between the El Niño winter 1987 and the La Niña winter 1989 include a negative North Atlantic Oscillation index with corresponding changes in temperature and precipitation patterns, a weak polar vortex, a warm Arctic middle stratosphere, negative and positive total ozone anomalies in the tropics and at middle to high latitudes, respectively, as well as anomalous upward and poleward Eliassen-Palm (EP) flux in the midlatitude lower stratosphere. Most of the tropospheric features are well reproduced in the ensemble means in both models, though the amplitudes are underestimated. In the stratosphere, the SOCOL simulations compare well with observations with respect to zonal wind, temperature, EP flux, and ozone, but magnitudes are underestimated in the middle stratosphere. The polar vortex strength is well reproduced, but within-ensemble variability is too large for obtaining a significant signal in Arctic temperature and ozone. With respect to the mechanisms relating ENSO to stratospheric circulation, the results suggest that both, upward and poleward components of anomalous EP flux are important for obtaining the stratospheric signal and that an increase in strength of the Brewer-Dobson circulation is part of that signal

    Rigidity and defect actions in Landau-Ginzburg models

    Full text link
    Studying two-dimensional field theories in the presence of defect lines naturally gives rise to monoidal categories: their objects are the different (topological) defect conditions, their morphisms are junction fields, and their tensor product describes the fusion of defects. These categories should be equipped with a duality operation corresponding to reversing the orientation of the defect line, providing a rigid and pivotal structure. We make this structure explicit in topological Landau-Ginzburg models with potential x^d, where defects are described by matrix factorisations of x^d-y^d. The duality allows to compute an action of defects on bulk fields, which we compare to the corresponding N=2 conformal field theories. We find that the two actions differ by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected proof of theorem 2.13, added remark 3.9; version to appear in CM
    corecore