10,147 research outputs found

    A Definitive Optical Detection of a Supercluster at z = 0.91

    Get PDF
    We present the results from a multi-band optical imaging program which has definitively confirmed the existence of a supercluster at z = 0.91. Two massive clusters of galaxies, CL1604+4304 at z = 0.897 and CL1604+4321 at z = 0.924, were originally observed in the high-redshift cluster survey of Oke, Postman & Lubin (1998). They are separated by 4300 km/s in radial velocity and 17 arcminutes on the plane of the sky. Their physical and redshift proximity suggested a promising supercluster candidate. Deep BRi imaging of the region between the two clusters indicates a large population of red galaxies. This population forms a tight, red sequence in the color--magnitude diagram at (R-i) = 1.4. The characteristic color is identical to that of the spectroscopically-confirmed early-type galaxies in the two member clusters. The red galaxies are spread throughout the 5 Mpc region between CL1604+4304 and CL1604+4321. Their spatial distribution delineates the entire large scale structure with high concentrations at the cluster centers. In addition, we detect a significant overdensity of red galaxies directly between CL1604+4304 and CL1604+4321 which is the signature of a third, rich cluster associated with this system. The strong sequence of red galaxies and their spatial distribution clearly indicate that we have discovered a supercluster at z = 0.91.Comment: Accepted for publication in Astrophysical Journal Letters. 13 pages, including 5 figure

    Comparison between mirror Langmuir probe and gas puff imaging measurements of intermittent fluctuations in the Alcator C-Mod scrape-off layer

    Get PDF
    Statistical properties of the scrape-off layer (SOL) plasma fluctuations are studied in ohmically heated plasmas in the Alcator C-Mod tokamak. For the first time, plasma fluctuations as well as parameters that describe the fluctuations are compared across measurements from a mirror Langmuir probe (MLP) and from gas-puff imaging (GPI) that sample the same plasma discharge. This comparison is complemented by an analysis of line emission time-series data, synthesized from the MLP electron density and temperature measurements. The fluctuations observed by the MLP and GPI typically display relative fluctuation amplitudes of order unity together with positively skewed and flattened probability density functions. Such data time series are well described by an established stochastic framework which model the data as a superposition of uncorrelated, two-sided exponential pulses. The most important parameter of the process is the intermittency parameter, {\gamma} = {\tau}d / {\tau}w where {\tau}d denotes the duration time of a single pulse and {\tau}w gives the average waiting time between consecutive pulses. Here we show, using a new deconvolution method, that these parameters can be consistently estimated from different statistics of the data. We also show that the statistical properties of the data sampled by the MLP and GPI diagnostic are very similar. Finally, a comparison of the GPI signal to the synthetic line-emission time series suggests that the measured emission intensity can not be explained solely by a simplified model which neglects neutral particle dynamics

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    Comments on the classification of orientifolds

    Full text link
    The simple current construction of orientifolds based on rational conformal field theories is reviewed. When applied to SO(16) level 1, one can describe all ten-dimensional orientifolds in a unified framework.Comment: 9 pages, Contribution to proceedings of RTN-workshop in Leuven, Belgium, September 200

    Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

    Get PDF
    The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution function. The damping rate, frequency, and eigenmode spectrum of electron-plasma waves are found as functions of the collision frequency and wavelength. A comparison is made between the collisionless Landau damping limit, the Lenard-Bernstein and Dougherty collision operators, and the electron-ion collision operator, finding large deviations in the damping rates and eigenmode spectra. A purely damped entropy mode, characteristic of a plasma where pitch-angle scattering effects are dominant with respect to collisionless effects, is shown to emerge numerically, and its dispersion relation is analytically derived. It is shown that such a mode is absent when simplified collision operators are used, and that like-particle collisions strongly influence the damping rate of the entropy mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma Physic

    Developing a Pilot Case and Modelling the Development of a Large European CO<sub>2</sub> Transport Infrastructure -The GATEWAY H2020 Project

    Get PDF
    The H2020 GATEWAY project aims to develop a comprehensive model Pilot Case which, intentionally, will pave the ground for CCS deployment in Europe. It will result from the assessment of, technical, commercial, judicial and societal issues related to a future CO2 transport infrastructure. The Pilot Case derived on this basis, will emphasize a gateway for CO2 transport in the North Sea Basin. Four potential pilot cases have been evaluated through a combination of techno-economic modelling of the individual cases and evaluation against more qualitative criteria. The chosen Pilot Case, Rotterdam Nucleus, will be refined and developed during the remaining period of the GATEWAY project. To maximise impact, the GATEWAY project adapts its work to lay the foundation for a future application to a European ‘Project of Common Interest’ (PCI). Continuous dialogue with the most relevant stakeholders is an important part of GATEWAY, as a Coordination and Support Action (CSA) H2020 project

    Hospital Community Benefits After the ACA: Building on State Experience

    Get PDF
    Analyzes hospitals' requirements to conduct community health needs assessments, financial assistance and billing and collection policies, and community benefit reporting and oversight strategies. Notes implications for federal and state law and practice
    • 

    corecore