24 research outputs found
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
Letter to the editor
Comment on
Flex: a new computerized system for mechanical ventilation. [J Clin Monit Comput. 2008
Automatic selection of tidal volume, respiratory frequency and minute ventilation in intubated ICU patients as start up procedure for closed-loop controlled ventilation.
OBJECTIVE: Before a patient can be connected to a mechanical ventilator, the controls of the apparatus need to be set up appropriately. Today, this is done by the intensive care professional. With the advent of closed loop controlled mechanical ventilation, methods will be needed to select appropriate start up settings automatically. The objective of our study was to test such a computerized method which could eventually be used as a start-up procedure (first 5-10 minutes of ventilation) for closed-loop controlled ventilation. DESIGN: Prospective Study. SETTINGS: ICU's in two adult and one children's hospital. PATIENTS: 25 critically ill adult patients (age > or = 15 y) and 17 critically ill children selected at random were studied. INTERVENTIONS: To stimulate 'initial connection', the patients were disconnected from their ventilator and transiently connected to a modified Hamilton AMADEUS ventilator for maximally one minute. During that time they were ventilated with a fixed and standardized breath pattern (Test Breaths) based on pressure controlled synchronized intermittent mandatory ventilation (PCSIMV). MEASUREMENTS AND MAIN RESULTS: Measurements of airway flow, airway pressure and instantaneous CO2 concentration using a mainstream CO2 analyzer were made at the mouth during application of the Test-Breaths. Test-Breaths were analyzed in terms of tidal volume, expiratory time constant and series dead space. Using this data an initial ventilation pattern consisting of respiratory frequency and tidal volume was calculated. This ventilation pattern was compared to the one measured prior to the onset of the study using a two-tailed paired t-test. Additionally, it was compared to a conventional method for setting up ventilators. The computer-proposed ventilation pattern did not differ significantly from the actual pattern (p > 0.05), while the conventional method did. However the scatter was large and in 6 cases deviations in the minute ventilation of more than 50% were observed. CONCLUSIONS: The analysis of standardized Test Breaths allows automatic determination of an initial ventilation pattern for intubated ICU patients. While this pattern does not seem to be superior to the one chosen by the conventional method, it is derived fully automatically and without need for manual patient data entry such as weight or height. This makes the method potentially useful as a start up procedure for closed-loop controlled ventilation
The HEV Ventilator: at the interface between particle physics and biomedical engineering
A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available. HEV supports remote training and post market surveillance via a Web interface and data logging to complement standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the ventilation performance, especially the quality and accuracy of the pressure curves, reactivity of the trigger, measurement of delivered volume and control of oxygen mixing, delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with a performance evaluation.ISSN:2054-570