1,370 research outputs found

    Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif Central, France

    Get PDF
    Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike-slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike-slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks. Some granites emplaced in the strike-slip shear zone are bounded at their roof by low dip normal faults that strike N-S, perpendicular to the E-W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen. © 2009 Elsevier B.V. All rights reserved

    Space-time laser instabilities in homogeneously broadened dense media

    Get PDF
    We investigate the space-time dynamics of a homogeneously broadened single-mode laser when local field correction (LFC) is taken into account. We demonstrate that the Maxwell-Bloch equations modified by LFC admit travelling-wave solutions, as when LFC is not taken into account. Their stability is discussed and compared to the case without LFC

    Hot electron cooling by acoustic phonons in graphene

    Full text link
    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on TVT\propto\sqrt{V} behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ\Sigma in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ\Sigma, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.Comment: 5 figure

    Stabilization of space–time laser instability through the finite transverse extension of pumping

    Get PDF
    We investigate the space–time dynamics of a homogeneously broadened single-mode laser when diffraction is taken into account. It is well known that such a laser displays instability when pumping reaches the second laser threshold. We show that the laser dynamics can be stabilized by pumping in a domain of finite width. The analysis of stationary solutions to the Maxwell–Bloch equations (evanescent waves, travelling waves, localized solutions) allows the stabilization mechanism to be explained

    Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser

    Get PDF
    We have designed and performed an experiment that permitted direct observation of Brillouin backscattering in an Yb-doped double-clad fiber laser. Fifteen Brillouin-shifted frequencies were observed for the first time to our knowledge. We clearly demonstrate that stimulated Brillouin scattering is directly responsible for both fast transient dynamics of the laser and reduction of the laser’s pulse width

    Instance Space of the Number Partitioning Problem

    Full text link
    Within the replica framework we study analytically the instance space of the number partitioning problem. This classic integer programming problem consists of partitioning a sequence of N positive real numbers \{a_1, a_2,..., a_N} (the instance) into two sets such that the absolute value of the difference of the sums of aja_j over the two sets is minimized. We show that there is an upper bound αcN\alpha_c N to the number of perfect partitions (i.e. partitions for which that difference is zero) and characterize the statistical properties of the instances for which those partitions exist. In particular, in the case that the two sets have the same cardinality (balanced partitions) we find αc=1/2\alpha_c=1/2. Moreover, we show that the disordered model resulting from hte instance space approach can be viewed as a model of replicators where the random interactions are given by the Hebb rule.Comment: 7 page

    Mutual Information of Population Codes and Distance Measures in Probability Space

    Full text link
    We studied the mutual information between a stimulus and a large system consisting of stochastic, statistically independent elements that respond to a stimulus. The Mutual Information (MI) of the system saturates exponentially with system size. A theory of the rate of saturation of the MI is developed. We show that this rate is controlled by a distance function between the response probabilities induced by different stimuli. This function, which we term the {\it Confusion Distance} between two probabilities, is related to the Renyi α\alpha-Information.Comment: 11 pages, 3 figures, accepted to PR

    Dzyaloshinsky-Moriya Anisotropy in the Spin-1/2 Kagom\'e Compound ZnCu3_{3}(OH)6_{6}Cl2_{2}

    Get PDF
    We report the determination of the Dzyaloshinsky-Moriya interaction, the dominant magnetic anisotropy term in the \kagome spin-1/2 compound {\herbert}. Based on the analysis of the high-temperature electron spin resonance (ESR) spectra, we find its main component Dz=15(1)|D_z|=15(1) K to be perpendicular to the \kagome planes. Through the temperature dependent ESR line-width we observe a building up of nearest-neighbor spin-spin correlations below \sim150 K.Comment: 4 pages, 3 figures, minor modification

    Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Full text link
    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction is studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilised by synaptic noise and well separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretica
    corecore