7,147 research outputs found

    Soft X-ray emission in kink-unstable coronal loops

    Get PDF
    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the flare plasma heating. We compute the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops using MHD simulations and discuss the results of with respect to solar flare observations. The model consists of a highly twisted loop embedded in a region of uniform and untwisted coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly adiabatic. Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (> 20 MK), to a quick enhancement of X-ray emission and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures T > 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events but cools down conductively. The total thermal X-ray emission slowly fades away during this phase, and the high temperature component of emission measure distribution converges to the power-law distribution EMT4.2EM\propto T^{-4.2}. The amount of twist deduced directly from the X-ray emission patterns is considerably lower than the maximum magnetic twist in the simulated flux-ropes.Comment: submitted to A&

    Quantum chaos in open systems: a quantum state diffusion analysis

    Full text link
    Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in the macroscopic limit, even for nonlinear and chaotic systems. We apply the theory to the forced, damped Duffing oscillator, comparing the numerical results of the full and linearized equations, and argue that this can be used to make explicit calculations in the decoherent histories formalism of quantum mechanics.Comment: 18 pages standard LaTeX + 9 figures; extensively trimmed; to appear in J. Phys.

    The Low Redshift Lyman Alpha Forest in Cold Dark Matter Cosmologies

    Get PDF
    We study the physical origin of the low-redshift Lyman alpha forest in hydrodynamic simulations of four CDM cosmologies. Our main conclusions are insensitive to the cosmological model but depend on our assumption that the UV background declines at low redshift. We find that the expansion of the universe drives rapid evolution of dN/dz (the number of absorbers per unit z) at z > 1.7, but that at lower redshift the fading of the UV background counters the influence of expansion, leading to slow evolution. At every redshift, weaker lines come primarily from moderate fluctuations of the diffuse, unshocked IGM, and stronger lines originate in shocked or radiatively cooled gas of higher overdensity. However, the neutral hydrogen column density associated with structures of fixed overdensity drops as the universe expands, so an absorber at z = 0 is dynamically analogous to an absorber with neutral hydrogen column density 10 to 50 times higher at z = 2-3. We find no clear distinction between lines arising in "galaxy halos" and lines arising in larger scale structures; however, galaxies tend to lie near the dense regions of the IGM that produce strong Lyman alpha lines. The simulations provide a unified physical picture that accounts for the most distinctive observed properties of the low redshift Lyman alpha forest: (1) a sharp transition in the evolution of dN/dz at z ~ 1.7, (2) stronger evolution for absorbers of higher equivalent width, (3) a correlation of increasing Lyman alpha equivalent width with decreasing galaxy impact parameter, and (4) a tendency for stronger lines to arise in close proximity to galaxies while weaker lines trace more diffuse large scale structure. (Abridged)Comment: 57 pages, 18 figures, submitted to Ap

    Nonlinear position and stiffness Backstepping controller for a two Degrees of Freedom pneumatic robot

    Get PDF
    This paper presents an architecture of a 2 Degrees of Freedom pneumatic robot which can be used as a haptic interface. To improve the haptic rendering of this device, a nonlinear position and stiffness controller without force measurement based on a Backstepping synthesis is presented. Thus, the robot can follow a targeted trajectory in Cartesian position with a variable compliant behavior when disturbance forces are applied. An appropriate tuning methodology of the closed-loop stiffness and closed-loop damping of the robot is given to obtain a desired disturbance response. The models, the synthesis and the stability analysis of this controller are described in this paper. Two models are presented in this paper, the first one is an accurate simulation model which describes the mechanical behavior of the robot, the thermodynamics phenomena in the pneumatic actuators, and the servovalves characteristics. The second model is the model used to synthesize the controller. This control model is obtained by simplifying the simulation model to obtain a MIMO strict feedback form. Finally, some simulation and experimental results are given and the controller performances are discussed and compared with a classical linear impedance controller

    The development of a carbon roadmap investment strategy for carbon intensive food retail industries

    Get PDF
    This work presents an approach to develop an innovative decarbonisation investment strategy framework for carbon intensive UK industries by using statistical analysis and optimisation modelling. The case study focuses on taking a representative sample of retail buildings and assesses the financial viability of installing low-carbon Combined Heat and Power units (CHPs) and Photovoltaic Solar Panels (PVs) across a portfolio of buildings. Simulation of each building are initially conducted, and the results generate a set of regression coefficients, via a multivariate adaptive regression splines (MARS), which are inputted into a Mixed Integer Linear Programming (MILP) problem. Solving the MILP yields the optimal decarbonisation investment strategy for the case study up to 2050, considering market trends such as electricity prices, gas prices and policy incentives. Results indicate the level of investment required per year, the operational and carbon savings associated, and a program for such investments. This method is reiterated for several scenarios where different parameters such as utility prices, capital costs and grid carbon factors are forecasted up to 2050 (following the Future Energy Scenarios from National Grid). This work shows how a clear mathematical framework can assist decision-makers in commercial organisations to reduce their carbon footprint cost-effectively and thus reach science-based targets

    Classical Dynamics of the Quantum Harmonic Chain

    Get PDF
    The origin of classical predictability is investigated for the one dimensional harmonic chain considered as a closed quantum mechanical system. By comparing the properties of a family of coarse-grained descriptions of the chain, we conclude that local coarse-grainings in this family are more useful for prediction than nonlocal ones. A quantum mechanical system exhibits classical behavior when the probability is high for histories having the correlations in time implied by classical deterministic laws. But approximate classical determinism holds only for certain coarse-grainings and then only if the initial state of the system is suitably restricted. Coarse-grainings by the values of the hydrodynamic variables (integrals over suitable volumes of densities of approximately conserved quantities) define the histories usually used in classical physics. But what distinguishes this coarse-graining from others? This paper approaches this question by analyzing a family of coarse-grainings for the linear harmonic chain. At one extreme in the family the chain is divided into local groups of NN atoms. At the other extreme the NN atoms are distributed nonlocally over the whole chain. Each coarse-graining follows the average (center of mass) positions of the groups and ignores the ``internal'' coordinates within each group, these constituting a different environment for each coarse-graining. We conclude that noise, decoherence, and computational complexity favor locality over nonlocality for deterministic predictability.Comment: 38 pages RevTeX 3.0 + 4 figures (postscript). Numerous minor corrections. Submitted to Physical Review

    On compatibility and improvement of different quantum state assignments

    Full text link
    When Alice and Bob have different quantum knowledges or state assignments (density operators) for one and the same specific individual system, then the problems of compatibility and pooling arise. The so-called first Brun-Finkelstein-Mermin (BFM) condition for compatibility is reobtained in terms of possessed or sharp (i. e., probability one) properties. The second BFM condition is shown to be generally invalid in an infinite-dimensional state space. An argument leading to a procedure of improvement of one state assifnment on account of the other and vice versa is presented.Comment: 8 page

    A new 21-cm absorber identified with an LLL \sim L^\star galaxy

    Full text link
    We present Giant Metrewave Radio Telescope (GMRT) observations of redshifted 21-cm absorption from the z=0.437z=0.437 metal line absorption system towards PKS 1243-072. HI absorption is clearly detected; the absorption profile has a velocity spread of 20\sim 20 km/s. Detection of 21-cm absorption indicates that the absorber has an HI column density large enough to be classified as a damped Lyman-α\alpha system. Follow up ground based optical imaging and spectroscopy allow us to identify the absorber with an LLL \sim L^\star galaxy at an impact parameter of 9.8\sim 9.8 kpc from the line of sight to the QSO. The absorbing galaxy is unusual in that it has bright emission lines. On the basis of the optical spectrum we are unable to uniquely classify the galaxy since its emission line ratios lie in the transition region between starburst and Seyfert II type spectra.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    A population-based approach to background discrimination in particle physics

    Full text link
    Background properties in experimental particle physics are typically estimated using control samples corresponding to large numbers of events. This can provide precise knowledge of average background distributions, but typically does not consider the effect of fluctuations in a data set of interest. A novel approach based on mixture model decomposition is presented as a way to estimate the effect of fluctuations on the shapes of probability distributions in a given data set, with a view to improving on the knowledge of background distributions obtained from control samples. Events are treated as heterogeneous populations comprising particles originating from different processes, and individual particles are mapped to a process of interest on a probabilistic basis. The proposed approach makes it possible to extract from the data information about the effect of fluctuations that would otherwise be lost using traditional methods based on high-statistics control samples. A feasibility study on Monte Carlo is presented, together with a comparison with existing techniques. Finally, the prospects for the development of tools for intensive offline analysis of individual events at the Large Hadron Collider are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser. Minor changes have been made to the text with respect to the published article with a view to improving readabilit

    Log-normal distributions of suspended particles in the open ocean

    Get PDF
    A scanning electron microscope-electron microprobe technique was used to chemically distinguish and size particles as fine as 0.2/µm on GEOSECS suspended matter filters from the open ocean…
    corecore