354 research outputs found
Asthma, asthma control and risk of ischemic stroke:The HUNT study
Background: Asthma, a chronic inflammatory airway disease, shares common pathophysiological mechanisms with ischemic stroke. The aim of the study is to assess the association between asthma, levels of asthma control and ischemic stroke risk in men and women and by smoking habits. Methods: This prospective population-based cohort study utilized data on 58 712 adults from HUNT Study in Norway free from stroke. Self-reported asthma was categorized as ever asthma, non-active asthma and active asthma (i.e., being on asthma medication within 12 months of the baseline). Asthma control was defined ac-cording to the Global Initiative for Asthma questionnaire and was categorized into controlled and not controlled asthma. Stroke was ascertained by linking HUNT data with Nord-Trøndelag hospital records and the Norwegian Patient Registry. Results: During a mean follow-up of 17.3 �5.3 years, 2619 participants (4.5%) had a first stroke. Not controlled asthma was associated with a modest increased risk of stroke (adjusted HR 1.34, 95%CI 1.03–1.73). Subgroup analyses revealed that the respective association was stronger among those with history of smoking (HR 1.48, 95%CI 1.10–2.00) and males (HR 1.55, 95%CI 1.12–2.16) while absent in non-smokers (HR 1.02, 95%CI 0.61–1.70) and females (HR 1.05, 95%CI 0.69–1.60). Likewise, active asthma was associated with similar increased stroke risk among smokers and males and absent in non-smokers and females. Conclusions: Symptomatic and active asthma was associated with a modest increased relative risk for ischemic stroke in smokers and males. Future studies should clarify the difference in risks and mechanisms between different phenotypes of asthma
Taller height and risk of coronary heart disease and cancer:A within-sibship Mendelian randomization study
BACKGROUND: Taller people have a lower risk of coronary heart disease but a higher risk of many cancers. Mendelian randomization (MR) studies in unrelated individuals (population MR) have suggested that these relationships are potentially causal. However, population MR studies are sensitive to demography (population stratification, assortative mating) and familial (indirect genetic) effects. METHODS: In this study, we performed within-sibship MR analyses using 78,988 siblings, a design robust against demography and indirect genetic effects of parents. For comparison, we also applied population MR and estimated associations with measured height. RESULTS: Within-sibship MR estimated that 1 SD taller height lowers the odds of coronary heart disease by 14% (95% CI: 3–23%) but increases the odds of cancer by 18% (95% CI: 3–34%), highly consistent with population MR and height-disease association estimates. There was some evidence that taller height reduces systolic blood pressure and low-density lipoprotein cholesterol, which may mediate some of the protective effects of taller height on coronary heart disease risk. CONCLUSIONS: For the first time, we have demonstrated that the purported effects of height on adulthood disease risk are unlikely to be explained by demographic or familial factors, and so likely reflect an individual-level causal effect. Disentangling the mechanisms via which height affects disease risk may improve the understanding of the etiologies of atherosclerosis and carcinogenesis. FUNDING: This project was conducted by researchers at the MRC Integrative Epidemiology Unit (MC_UU_00011/1) and also supported by a Norwegian Research Council Grant number 295989
Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses
Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-TrOndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies. Family-based study designs have been applied to resolve confounding by population stratification, dynastic effects and assortative mating in genetic association analyses. Here, Brumpton et al. describe theory and simulations for overcoming such biases in Mendelian randomization through within-family studies.Peer reviewe
Investigating a Potential Causal Relationship Between Maternal Blood Pressure During Pregnancy and Future Offspring Cardiometabolic Health
Observational epidemiological studies have reported that higher maternal blood pressure (BP) during pregnancy is associated with increased future risk of offspring cardiometabolic disease. However, it is unclear whether this association represents a causal relationship through intrauterine mechanisms. We used a Mendelian randomization (MR) framework to examine the relationship between unweighted maternal genetic scores for systolic BP and diastolic BP and a range of cardiometabolic risk factors in the offspring of up to 29 708 genotyped mother-offspring pairs from the UKB study (UK Biobank) and the HUNT study (Trøndelag Health). We conducted similar analyses in up to 21 423 father-offspring pairs from the same cohorts. We confirmed that the BP-associated genetic variants from the general population sample also had similar effects on maternal BP during pregnancy in independent cohorts. We did not detect any association between maternal (or paternal) unweighted genetic scores and cardiometabolic offspring outcomes in the meta-analysis of UKB and HUNT after adjusting for offspring genotypes at the same loci. We find little evidence to support the notion that maternal BP is a major causal risk factor for adverse offspring cardiometabolic outcomes in later life
Body mass index and risk of dying from a bloodstream infection: A Mendelian randomization study.
BACKGROUND: In observational studies of the general population, higher body mass index (BMI) has been associated with increased incidence of and mortality from bloodstream infection (BSI) and sepsis. On the other hand, higher BMI has been observed to be apparently protective among patients with infection and sepsis. We aimed to evaluate the causal association of BMI with risk of and mortality from BSI. METHODS AND FINDINGS: We used a population-based cohort in Norway followed from 1995 to 2017 (the Trøndelag Health Study [HUNT]), and carried out linear and nonlinear Mendelian randomization analyses. Among 55,908 participants, the mean age at enrollment was 48.3 years, 26,324 (47.1%) were men, and mean BMI was 26.3 kg/m2. During a median 21 years of follow-up, 2,547 (4.6%) participants experienced a BSI, and 451 (0.8%) died from BSI. Compared with a genetically predicted BMI of 25 kg/m2, a genetically predicted BMI of 30 kg/m2 was associated with a hazard ratio for BSI incidence of 1.78 (95% CI: 1.40 to 2.27; p < 0.001) and for BSI mortality of 2.56 (95% CI: 1.31 to 4.99; p = 0.006) in the general population, and a hazard ratio for BSI mortality of 2.34 (95% CI: 1.11 to 4.94; p = 0.025) in an inverse-probability-weighted analysis of patients with BSI. Limitations of this study include a risk of pleiotropic effects that may affect causal inference, and that only participants of European ancestry were considered. CONCLUSIONS: Supportive of a causal relationship, genetically predicted BMI was positively associated with BSI incidence and mortality in this cohort. Our findings contradict the "obesity paradox," where previous traditional epidemiological studies have found increased BMI to be apparently protective in terms of mortality for patients with BSI or sepsis
Genetic associations with temporal shifts in obesity and severe obesity during the obesity epidemic in Norway:A longitudinal population-based cohort (the HUNT Study)
Background
Obesity has tripled worldwide since 1975 as environments are becoming more obesogenic. Our study investigates how changes in population weight and obesity over time are associated with genetic predisposition in the context of an obesogenic environment over 6 decades and examines the robustness of the findings using sibling design.
Methods and findings
A total of 67,110 individuals aged 13–80 years in the Nord-Trøndelag region of Norway participated with repeated standardized body mass index (BMI) measurements from 1966 to 2019 and were genotyped in a longitudinal population-based health study, the Trøndelag Health Study (the HUNT Study). Genotyping required survival to and participation in the HUNT Study in the 1990s or 2000s. Linear mixed models with observations nested within individuals were used to model the association between a genome-wide polygenic score (GPS) for BMI and BMI, while generalized estimating equations were used for obesity (BMI ≥ 30 kg/m2) and severe obesity (BMI ≥ 35 kg/m2).
The increase in the average BMI and prevalence of obesity was steeper among the genetically predisposed. Among 35-year-old men, the prevalence of obesity for the least predisposed tenth increased from 0.9% (95% confidence interval [CI] 0.6% to 1.2%) to 6.5% (95% CI 5.0% to 8.0%), while the most predisposed tenth increased from 14.2% (95% CI 12.6% to 15.7%) to 39.6% (95% CI 36.1% to 43.0%). Equivalently for women of the same age, the prevalence of obesity for the least predisposed tenth increased from 1.1% (95% CI 0.7% to1.5%) to 7.6% (95% CI 6.0% to 9.2%), while the most predisposed tenth increased from 15.4% (95% CI 13.7% to 17.2%) to 42.0% (95% CI 38.7% to 45.4%). Thus, for 35-year-old men and women, respectively, the absolute change in the prevalence of obesity from 1966 to 2019 was 19.8 percentage points (95% CI 16.2 to 23.5, p < 0.0001) and 20.0 percentage points (95% CI 16.4 to 23.7, p < 0.0001) greater for the most predisposed tenth compared with the least predisposed tenth, defined using the GPS for BMI. The corresponding absolute changes in the prevalence of severe obesity for men and women, respectively, were 8.5 percentage points (95% CI 6.3 to 10.7, p < 0.0001) and 12.6 percentage points (95% CI 9.6 to 15.6, p < 0.0001) greater for the most predisposed tenth. The greater increase in BMI in genetically predisposed individuals over time was apparent after adjustment for family-level confounding using a sibling design. Key limitations include a slightly lower survival to date of genetic testing for the older cohorts and that we apply a contemporary genetic score to past time periods. Future research should validate our findings using a polygenic risk score constructed from historical data.
Conclusions
In the context of increasingly obesogenic changes in our environment over 6 decades, our findings reveal a growing inequality in the risk for obesity and severe obesity across GPS tenths. Our results suggest that while obesity is a partially heritable trait, it is still modifiable by environmental factors. While it may be possible to identify those most susceptible to environmental change, who thus have the most to gain from preventive measures, efforts to reverse the obesogenic environment will benefit the whole population and help resolve the obesity epidemic
- …