183 research outputs found
On the maximal ionization of atoms in strong magnetic fields
We give upper bounds for the number of spin 1/2 particles that can be bound
to a nucleus of charge Z in the presence of a magnetic field B, including the
spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1
for magnetic fields that go to zero at infinity, ignoring the spin-field
interaction. For particles with fermionic statistics in a homogeneous magnetic
field our upper bound has an additional term of order
.Comment: LaTeX2e, 8 page
H2 molecule in strong magnetic fields
The Pauli-Hamiltonian of a molecule with fixed nuclei in a strong constant
magnetic field is asymptotic, in norm-resolvent sense, to an effective
Hamiltonian which has the form of a multi-particle Schr\"odinger operator with
interactions given by one-dimensional \delta-potentials. We study this
effective Hamiltonian in the case of the H2 -molecule and establish existence
of the ground state. We also show that the inter-nuclear equilibrium distance
tends to 0 as the field-strength tends to infinity
Auto-tail dependence coefficients for stationary solutions of linear stochastic recurrence equations and for GARCH(1,1)
We examine the auto-dependence structure of strictly stationary solutions of linear stochastic recurrence equations and of strictly stationary GARCH(1, 1) processes from the point of view of ordinary and generalized tail dependence coefficients. Since such processes can easily be of infinite variance, a substitute for the usual auto-correlation function is needed
Synthesis and characterization of bis(eta(5)-1,2,3,4,5-pentamethylcyclopentadienyl)(eta(3)-1-phenylallyl)lanthanum center dot tetrahydrofuran
The title compound has been prepared from Cp-2*LaCl2K(THF)(2) and 1-PhC3H4K-(THF)(0.5) in THF suspension, forming yellow single crystals from hexane solution which were characterized in solid state and in solution by elementary analysis, IR, C-13- and variable temperature H-1-NMR spectroscopy and a crystal structure determination. Space group P1, Z = 2, T = 130 K, a = 8.595(1), b = 10.770(1), c = 17.903(5) angstrom, alpha = 93.54(1)degrees, beta = 98.30(1)degrees, gamma = 112.42(1)degrees, R = 0.0249
Continuum theory of vacancy-mediated diffusion
We present and solve a continuum theory of vacancy-mediated diffusion (as
evidenced, for example, in the vacancy driven motion of tracers in crystals).
Results are obtained for all spatial dimensions, and reveal the strongly
non-gaussian nature of the tracer fluctuations. In integer dimensions, our
results are in complete agreement with those from previous exact lattice
calculations. We also extend our model to describe the vacancy-driven
fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review
Quantitative uniqueness for elliptic equations with singular lower order terms
We use a Carleman type inequality of Koch and Tataru to obtain quantitative
estimates of unique continuation for solutions of second order elliptic
equations with singular lower order terms. First we prove a three sphere
inequality and then describe two methods of propagation of smallness from sets
of positive measure.Comment: 23 pages, v2 small changes are done and some mistakes are correcte
The Atomic Slide Puzzle: Self-Diffusion of an Impure Atom
In a series of recent papers van Gastel et al have presented first
experimental evidence that impure, Indium atoms, embedded into the first layer
of a Cu(001) surface, are not localized within the close-packed surface layers
but make concerted, long excursions visualized in a series of STM images. Such
excursions occur due to continuous reshuffling of the surface following the
position exchanges of both impure and host atoms with the naturally occuring
surface vacancies. Van Gastel et al have also formulated an original
lattice-gas type model with asymmetric exchange probabilities, whose numerical
solution is in a good agreement with the experimental data. In this paper we
propose an exact lattice solution of several versions of this model.Comment: Latex, 4 pages, 2 figures, to appear in Phys. Rev. E (RC
H^+_2$ in a strong magnetic field described via a solvable model
We consider the hydrogen molecular ion in the presence of a strong
homogeneous magnetic field. In this regime, the effective Hamiltonian is almost
one dimensional with a potential energy which looks like a sum of two Dirac
delta functions. This model is solvable, but not close enough to our exact
Hamiltonian for relevant strenght of the magnnetic field. However we show that
the correct values of the equilibrium distance as well as the binding energy of
the ground state of the ion, can be obtained when incorporating perturbative
corrections up to second order. Finally, we show that exists for
sufficiently large magnetic fields
Ultra-Slow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified
We study the dynamics of a charged tracer particle (TP) on a two-dimensional
lattice all sites of which except one (a vacancy) are filled with identical
neutral, hard-core particles. The particles move randomly by exchanging their
positions with the vacancy, subject to the hard-core exclusion. In case when
the charged TP experiences a bias due to external electric field ,
(which favors its jumps in the preferential direction), we determine exactly
the limiting probability distribution of the TP position in terms of
appropriate scaling variables and the leading large-N ( being the discrete
time) behavior of the TP mean displacement ; the latter is
shown to obey an anomalous, logarithmic law . On comparing our results with earlier predictions by Brummelhuis
and Hilhorst (J. Stat. Phys. {\bf 53}, 249 (1988)) for the TP diffusivity
in the unbiased case, we infer that the Einstein relation
between the TP diffusivity and the mobility holds in the leading in order, despite
the fact that both and are not constant but vanish as . We also generalize our approach to the situation with very small but
finite vacancy concentration , in which case we find a ballistic-type law
. We demonstrate that here,
again, both and , calculated in the linear in
approximation, do obey the Einstein relation.Comment: 25 pages, one figure, TeX, submitted to J. Stat. Phy
A One-Dimensional Model for Many-Electron Atoms in Extremely Strong Magnetic Fields: Maximum Negative Ionization
We consider a one-dimensional model for many-electron atoms in strong
magnetic fields in which the Coulomb potential and interactions are replaced by
one-dimensional regularizations associated with the lowest Landau level. For
this model we show that the maximum number of electrons is bounded above by
2Z+1 + c sqrt{B}.
We follow Lieb's strategy in which convexity plays a critical role. For the
case of two electrons and fractional nuclear charge, we also discuss the
critical value at which the nuclear charge becomes too weak to bind two
electrons.Comment: 23 pages, 5 figures. J. Phys. A: Math and General (in press) 199
- âŠ