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Abstract. We examine the auto-dependence structure of strictly stationary
solutions of linear stochastic recurrence equations and of strictly stationary
GARCH(1, 1) processes from the point of view of ordinary and generalized tail
dependence coefficients. Since such processes can easily be of infinite variance,
a substitute for the usual auto-correlation function is needed.
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1. Introduction

In this paper we study serial dependence in time-series from the point of view
of ordinary and generalized upper tail dependence coefficients, rather than that
of the traditional auto-correlations. More precisely, we will compute such auto-
tail dependence coefficients (whose definition we recall in (2.5) and (2.6) below)
for strictly stationary solutions of a scalar linear recurrence equation (SRE) and
for stationary GARCH(1, 1)-processes. The results of this paper generalize those
of [3], in which the author carried out such a study for both stationary and non-
stationary ARCH(1)-processes. Here we will focus on the stationary processes, the
non-stationary case needing different and slightly more technical proofs.

We briefly recall, from [3], some of the mathematical and statistical arguments
for replacing the traditional auto-correlations by alternative auto-dependence mea-
sures, when studying a non-linear time-series such as a GARCH.
• For a given stochastic process, auto-covariances and auto-correlations can be

ill-defined: as is well known, it is quite easy for stationary GARCH-processes,
or for stationary solutions of a SRE, to have infinite variance. An empirically
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relevant example is that of an IGARCH(1, 1): when modelling a financial
return series by a GARCH(1, 1)-process, the hypothesis of in fact having an
IGARCH can often not be rejected.

The situation can be worse for auto-correlations of functionals of the process, like
the correlations of the squared process. One may want to study these in order to
quantify the auto-dependence in the process when, for example, ordinary correla-
tions vanish. A typical example is again that of a GARCH. The auto-correlation
function of a squared GARCH requires however the existence of the fourth mo-
ment of the stationary process, imposing a yet more stringent condition on the
coefficients of the process, a condition which, in empirical applications, will often
not be satisfied.

• As an alternative, one may want to use sample auto-correlations; in fact, this
is what is mostly done in econometric practice. This presupposes the existence
of the limit of such sample auto-correlations as the sample size tends to infin-
ity. It has been shown, however, in a sequence of papers by Davis, Mikosch,
Stărică and Basrak, for increasingly general GARCH-processes, that the sam-
ple auto-correlations of a stationary GARCH with infinite variance will not
tend to a number anymore, but will have as its (weak) limit a random vari-
able whose probability distribution is that of the quotient of two components
of some jointly stable random vector. A similar result holds for systems of
linear SRE (from which the GARCH-result was in fact deduced).

This does not imply that sample auto-correlations are a priori useless in such cases:
if the data set is sufficiently big one could for example study the statistics of an
ensemble of auto-correlations computed from different samples drawn from this
data set.

• Finally, even when auto-correlations are well-defined, they may not be the
most useful dependence measure for the application at hand. In the context
of financial risk-management, for example, one of the advantages of the auto-
tail dependence coefficients which we will study in this paper is their direct
financial significance in terms of the probability of violating a value-at-risk
constraint given that such a violation will already have occurred.

We will limit ourselves in this paper to upper tail coefficients; the case of
lower tail dependence coefficients is completely analogous, and follows easily using
simple symmetry arguments. In Section 2 we compute ordinary and generalized
auto-upper tail dependence coefficients of the stationary solution of a scalar linear
SRE, and in Section 3 those of a strongly stationary GARCH(1, 1). In comparison
with ordinary tail dependence coefficients, our results for generalized tail depen-
dence coefficients have both weaker hypotheses and a stronger conclusion, which
moreover would be easier to test statistically. As was the case for an ARCH(1)
in [3], we expect our results for generalized tail dependence coefficients to generalize
to non-stationary GARCH(1, 1)’s and SRE’s, though not the ones for ordinary tail
dependence coefficient. The vanishing of the lower tail dependence coefficients for
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non-stationary ARCH(1)’s was an important motivation to introduce the general-
ized tail dependence coefficients in [3]. Although the generalized auto-tail depen-
dence coefficients may prove to be the more useful ones for practical applications,
the question of computing the ordinary auto-tail dependence coefficients is, from
a mathematical point of view, a natural one, and merits attention.

Our proofs in the GARCH(1, 1)-case parallel those for scalar SRE. It would
have been more satisfactory if we could have derived the auto-tail dependence coef-
ficients of a GARCH(1, 1) directly from those of a related SRE. We only managed
to do this in the special case of a symmetrical ARCH(1), as explained at the end
of Section 2, where we limited ourselves to ordinary tail dependence coefficients.
A similar argument for a GARCH(1, 1), and more generally for a GARCH(p, q),
would presumably need a generalization of Theorem 2.1 to systems of linear SRE.
Such a generalization does not at this moment seem entirely straightforward.

2. Auto-tail dependence for stationary solutions of stochastic
recurrence equations

We limit ourselves to scalar linear stochastic recurrence equations or SRE:

Xn+1 = An+1Xn +Bn+1, n ∈ Z, (2.1)

with (An, Bn) i.i.d. A convenient reference for the theory of such equations,
including the systems case, is [1]. It is known that the SRE (2.1) possesses
a unique strictly stationary causal solution (Xn)n∈Z whenever E(log |A1|) < 0
and E(max(log |B1|, 0)) < ∞. Moreover, by a classical result of Kesten (valid
in fact for systems of SRE), this stationary solution has, under certain techni-
cal conditions, regularly varying tails. In fact, if A1 ≥ 0 a.s., A1 has a non-
lattice distribution and if there exists a positive κ0 > 0 such that E(Aκ0

1 ) ≥ 1
and E (Aκ0

1 max(logA1, 0)) < ∞, then limx→∞ xκFXn(x) =: c exists, where
FXn(x) = P(Xn > x) and κ > 0 is the unique positive solution to

E(Aκ1 ) = 1. (2.2)

Stated otherwise,

FX1(x) '
c

xκ
, x→∞. (2.3)

Goldie [5] has given an alternative proof of Kesten’s theorem in the scalar case
which provides an explicit formula for the constant c (in terms of the stationary
distribution). The precise value of this constant will not be needed in this paper,
though, only its existence and the fact that it is non-zero.

For α ∈ [0, 1] let q(α) := qXn
(α) := sup{y : FXn

(y) ≥ α} be the α-th upper
quantile of Xn =d X1. It follows from (2.3) that

q(α) '
( c
α

)1/κ

, α→ 0. (2.4)
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Recall that the upper auto-tail dependence coefficient of Xn+p on Xn can be defined
by

λXn+p|Xn
:= lim

α→0
P (Xn+p > q(α)|Xn > q(α)) , (2.5)

assuming the limit exists. More generally, if ψ = ψ(α) is a function of α defined in
some small interval (0, δ) which satisfies limα→0 ψ(α) = 0, we define the generalized
upper auto-tail dependence coefficient ([3]) by

λ
ψ

Xn+p|Xn
:= lim

α→0
P (Xn+p > q(ψ(α))|Xn > q(α)) . (2.6)

We refer to [3] for motivation and further discussion of this concept. As will be
clear from our results below, the generalized tail dependence coefficients associated
to functions ψ(α) going to 0 at a slower rate than α will often be a stronger
indicator of tail dependence than λXn+p|Xn

itself. We note that (2.5) and (2.6)
make sense for any strictly stationary process, and that for a given such process
these tail dependence coefficients will only depend on the lag, p, and on ψ. For
non-stationary processes the two quantiles in the defining formulas should be those
of Xn+p and Xn, respectively, and would depend on time n+p and n, respectively.
In the case of a non-stationary ARCH(1) with a.s. initial condition X0 = x0 ∈ R,
this dependence of quantiles on time is what ultimately causes the ordinary tail
dependence coefficients to vanish: cf. [3].

The following two theorems are the main results of this section:

Theorem 2.1. Let (Xn)n be the unique causal stationary solution of (2.1). Suppose
that the conditions of Kesten’s theorem are satisfied, and assume that the cumula-
tive probability distribution of Any +B is continuous for any y ∈ R. Also assume
that An possesses a probability density. Then for p ≥ 1,

λXn+p|Xn
= κ

∫ ∞

1

P (A1A2 · · ·Apy > 1)
dy

yκ+1
, (2.7)

where κ > 0 is defined by (2.2).

Theorem 2.2. Assuming only that FAny+Bn
is continuous for all y (but still as-

suming that the conditions of Kesten’s theorem are met) we have that for all ψ
satisfying α = o (ψ(α)) as α→ 0, the generalized upper tail dependence coefficient
λ
ψ

Xn+p|Xn
= 1, for all p ≥ 1 (and trivially so for p = 0).

Proof of Theorem 2.1. We first prove the theorem for p = 1. We have to compute
the limit, as α→ 0, of

P (Xn+1 > q(α)|Xn > q(α))

=
1
α

P (Xn+1 > q(α), Xn > q(α))

= − 1
α

∫ ∞

q(α)

P (Xn+1 > q(α)|Xn = x) dF (x) (2.8)

= − 1
α

∫ ∞

q(α)

P (An+1x+Bn+1 > q(α)) dF (x), (2.9)
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where we have written F := FXn . Note that q(α) → ∞ as α → 0; in particular,
we can assume without loss of generality that q(α) > 0. If we now change variables
to x = q(α)y, and let

Gα(y) := −α−1F (q(α)y),
Formula (2.9) becomes∫ ∞

1

P
(
An+1y + q(α)−1Bn+1 > 1

)
dGα(y). (2.10)

Since F is right-continuous, F (q(α)) ≤ α (since FX(x) < α for x > q(α)), and
the measures dGα therefore have total mass bounded by 1. Under the hypothe-
ses of theorem, F = 1 − F is continuous, since F , being the stationary distri-
bution, satisfies the integral equation F (x) =

∫
P(Ay + B ≤ x) dF (y), where

(A,B) =d (An, Bn), and the probability distribution function of Ay+B is contin-
uous by assumption. It follows that F (q(α)) = α and, consequently, that dGα is a
probability measure on [1,∞).

The next two lemmas study the convergence of integrand and measure in
(2.10) as α→ 0.

Lemma 2.3. Let
ϕα(y) := P

(
Ay + q(α)−1B > 1

)
,

where (A,B) =d (An, Bn). Assume A has a continuous probability distribution.
Then as α→ 0,

ϕα(y) → ϕ0(y) := P (Ay ≥ 1) ,
uniformly on y ≥ 1.

Proof. For any fixed y > 0, let Eα and E0 be the events Eα := Eα(y) := {(A,B) :
Ay + q(α)−1B > 1} and E0 := E0(y) := {A : Ay > 1}, respectively. Then
ϕα(y) = P(Eα) and ϕ0(y) = P(E0), and

|ϕα(y)− ϕ0(y)| ≤ max (P(Eα \ E0),P(E0 \ Eα)) ≤ P(Eα∆E0),

where Eα∆E0 = (Eα \ E0) ∪ (E0 \ Eα), the symmetric difference. We note that
Eα∆E0 can be bounded by

Eα∆E0 =
{
1− q(α)−1B < Ay ≤ 1

}
∪
{
1 < Ay ≤ 1− q(α)−1B

}
⊆ {Ay ∈ [1− q(α)−1|B|, 1 + q(α)−1|B|]}
=: Iα(A,B).

Now let ε > 0 be arbitrary. Since limR→∞ P(|B| > R) = 0, we can find Rε such
that

P (Ay ∈ Iα(A,B), |B| > Rε) < ε,

uniformly in y. Next, for y ≥ 1,

P (Ay ∈ Iα(A,B), |B| ≤ Rε)
≤ P

(
A ∈ [y−1(1− q(α)−1Rε), y−1(1 + q(α)−1Rε)]

)
= FA

(
y−1(1 + q(α)−1Rε)

)
− FA

(
y−1(1− q(α)−1Rε)

)
,
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where FA(a) := P(A ≤ a) is the cumulative probability distribution function of A.
Since y−1 ∈ [0, 1] and since FA is uniformly continuous on compacta, the lemma
follows if we use that q(α) →∞. �

The next lemma shows that the family of measures dGα converges weakly to
κy−κ−1dy, when integrated against continuous functions on [1,∞) which have an
integrable derivative.

Lemma 2.4. Let ϕ ∈ C[0,∞) be differentiable, with derivative in L1. Then∫ ∞

1

ϕ(y)dGα(y) → κ

∫ ∞

1

ϕ(y)
dy

yκ+1
.

Proof. The hypotheses on ϕ imply that∫ ∞

1

ϕ(y)dGα(y) = −ϕ(1)−
∫ ∞

1

ϕ′(y)Gα(y)dy.

where we used that Gα(1) = 1. Now by (2.4) and (2.3),

Gα(y) ' − c

α(q(α))y)κ
= −y−κ,

as α→ 0, and therefore∫ ∞

1

ϕ(y)dGα(y) → −ϕ(1) +
∫ ∞

1

ϕ′(y) y−κ dy

= κ

∫ ∞

1

ϕ(y) y−κ−1 dy,

as was to be shown. �

Proof of Theorem 2.1 if p = 1: using the notation introduced in Lemma 2.3, (2.10)
can be written as∫ ∞

1

ϕαdGα =
∫ ∞

1

(ϕα − ϕ0) dGα +
∫ ∞

1

ϕ0dGα. (2.11)

The first term on the right tends to 0, since ϕα converges uniformly to ϕ0, by
Lemma 2.3, and since dGα has mass 1, independently of α. Next, Lemma 2.4
implies that the second term tends to

κ

∫ ∞

1

ϕ0(y)
dy

yκ+1
= κ

∫ ∞

1

P(A1y > 1)
dy

yκ+1
,

where we used that ϕ0 = FA(y−1) is differentiable, with integrable derivative. In
fact, ϕ′0(y) = y−2fA(y−1), where fA = −F ′A is the pdf of A, and∫ ∞

1

ϕ′0(y)dy =
∫ 1

0

fA(z)dz ≤ 1.

Hence (2.11) converges to κ
∫∞
1

P(A1y > 1) y−κ−1 dy, proving Theorem 2.1 when
p = 1.
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The case of arbitrary p follows by observing that the new process (Yk)k∈Z
defined by Yk := Xkp will be the strictly stationary causal solution of the SRE

Yk+1 = Ã
(p)
k+1Yk + B̃

(p)
k+1,

where
Ã

(p)
k+1 = A(k+1)p · · ·Akp+1 =d Ap · · ·A1,

and

B̃
(p)
k+1 =

p−1∑
j=0

(
j−1∏
ν=0

A(k+1)p−ν

)
B(k+1)p−j ,

with the empty product interpreted as the identity. It follows that

λXp|X0 = λY1|Y0 = κ

∫ ∞

1

P(Ap · · ·A1y > 1) y−κ−1dy.

This proves (2.7), since we can without loss of generality take n = 0. �

Proof of Theorem 2.2. Starting again with p = 1, one now shows by a similar
computation to the one which led to (2.10) that

P (Xn+1 > q(ψ(α))|Xn > q(α)) =
∫ ∞

1

ϕ̃α(y) dGα(y),

where now
ϕ̃α(y) := P

(
Ay + q(α)−1B > q(α)−1q(ψ(α))

)
.

Since, by (2.4), q(α)−1q(ψ(α)) '
(
ψ(α)−1α

)1/κ → 0 as α → 0, the arguments of
lemma 2.3 now show that the continuity of FA in 0 implies that ϕ̃α(y) → ϕ̃0(y) :=
P(Ay ≥ 0), uniformly for y ≥ 1. Recall that for Kesten’s theorem we need that
A ≥ 0 a.e. It follows that ϕ̃0(y) = P(Ay ≥ 0) = 1, for all positive y, and hence

P (Xn+1 > q(ψ(α))|Xn > q(α)) =
∫ ∞

1

ϕ̃αdGα

=
∫ ∞

1

(ϕ̃α − 1) dGα +
∫ ∞

1

dGα → 1,

as α→ 0, as was to be shown. The case of arbitrary positive p follows as before. �

We end this section by showing how the auto-tail dependence coefficients
of a stationary ARCH(1) found in [3] can be re-derived from Theorem 2.1, if we
furthermore assume that the ARCH(1) is symmetric. Recall that an ARCH(1)-
process is defined by the non-linear stochastic recursion

Xn+1 =
√
ω + aX2

n εn+1,

with (εn)n i.i.d. and a, ω ≥ 0. We will assume that εn has a symmetric probability
density. If (Xn)n is an ARCH(1), then (X2

n)n will solve the linear SRE X2
n+1 =

An+1X
2
n+Bn+1, with An+1 = aε2n+1 and Bn+1 = ωε2n+1. Stationarity and regular

tail-variation for (Xn)n then follow easily from an application of Kesten’s theorem
to (Xn)n, cf. [4].
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Let (Xn)n be a strictly stationary causal ARCH(1), with Xn =d X. If x > 0,
then it follows from the symmetry of εn that FX(x) = 1

2F |X|(x). Hence qX(α) =
q|X|(2α) for α’s less than 1/2. We also note that q|X|(α) =

√
qX2(α). Using that

|Xn+p| does not depend on the sign of Xn, we then find that

P (Xn+p > qX(α)|Xn > qX(α))

=
1
2

P (|Xn+p| > qX(α) |Xn > qX(α))

=
1
2

P
(
|Xn+p| > q|X|(2α) | |Xn| > qX(α), Xn > 0

)
=

1
2

P
(
|Xn+p| > q|X|(2α) | |Xn| > qX(α)

)
=

1
2

P
(
|Xn+p| > q|X|(2α) | |Xn| > q|X|(2α)

)
=

1
2

P
(
X2
n+p > qX2(2α) |X2

n > qX2(α)
)
.

Taking the limit of α→ 0, and using Theorem 2.1, we see that if we let κX2 denote
the tail-index of X2

n, then

λXn+p|Xn
=

1
2
κX2

∫ ∞

1

P

ap p∏
j=1

ε2n+j y > 1

 dy

yκX2+1

=
1
2
· 2κX2

∫ ∞

1

P

ap/2 p∏
j=1

|εn+j | z > 1

 dz

z2κX2+1

= κX

∫ ∞

1

P

ap/2εn+p

p−1∏
j=1

|εn+j |z > 1

 dz

zκX+1

where κX = 2κX2 is the tail-index of Xn. Letting fε denote the pdf of εn, this
integral can be evaluated as

κX

∫ ∞

1

∫
Rp−1

F ε

a−p/2
p−1∏
j=1

|zj |−1

 z−1

 p−1∏
j=1

fε(zj)
p−1∏
j=1

dzj
dz

zκX+1
, (2.12)

which is the analogue for upper tails of theorem 2 of [3]. Apart from the symmetry
assumption, this establishes λXn+p|Xn

under slightly weaker hypotheses than those
in [3], since we needed neither continuity nor boundedness of fε, only existence.

3. Tail dependence coefficients for GARCH(1,1)

Let (Xn, σn)n∈Z be a strictly stationary GARCH(1, 1), that is, (Xn)n is the strictly
stationary causal solution of the following system of non-linear stochastic recursion
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equations: {
Xn+1 = σn+1εn+1

σ2
n+1 = ω + aX2

n + bσ2
n,

(3.1)

where (εn)n is i.i.d. and where ω, a, b > 0. The system (3.1) can be linearized into
a 2 × 2-system of linear SRE for (X2

n, σ
2
n) (with in fact a deterministic equation

for σ2
n). We can also find a linear SRE for the coefficients σ2

n by themselves: if we
substitute Xn = σnεn into the second equation of (3.1), then

σ2
n+1 = Anσ

2
n +Bn, (3.2)

with An := aε2n+b and Bn := ω; cf. [7]. By Kesten’s theorem, and under appropri-
ate conditions on ε2n, the stationary solution σ2

n will have a regularly varying tail of
index κσ2 , where κ = κσ2 > 0 is the unique positive solution of E

(
(aε2 + b)κ

)
= 1.

It follows that
Fσ(s) := P(σn > s) ' c s−2κσ2 , s→∞,

for some positive constant c. The tail-behavior of Xn = σnεn can be found from
Breiman’s lemma (cf. [2, 7]) which states that if Y and Z are independent non-
negative random variables with Y regularly varying of index α and Z satisfying
E(Zα+ε) < ∞ for some ε > 0, then P(Y Z > x) ' E(Zα) · P(Y > x), for x → ∞.
Applying this with Y = σn and Z = max(εn, 0), we conclude that Xn has a
regularly varying upper tail of index κX =: 2κσ2 , for if x > 0, then

P(Xn > x) = P(σn max(εn, 0) > x)
' cE (max(εn, 0)κX ) · x−κX , x→∞. (3.3)

(There is of course a similar result for the lower tails.) It follows that the upper
quantiles of Xn behave asymptotically as

qX(α) := qXn
(α) ' (cE(max(ε, 0)κX ))1/κX α−1/κX , α→ 0. (3.4)

To compute the upper tail dependence coefficients of our stationary GARCH(1,
1), we start again with the case of lag p = 1. We assume that the εn have a pdf,
fε. If λXn+1|Xn

(α) := P (Xn+1 > qX(α)|Xn > qX(α)) we find, by conditioning on
the pair of independent random variables (σn, εn), which is independent of εn+1

also, that

λXn+1|Xn
(α) = α−1 P

(√
ω + (aε2n + b)σ2

n εn+1 > qX(α), σnεn > qX(α)
)

= −α−1

∫ ∫
{sz>qX(α),s>0}

P
(√

ω + (az2 + b)s2εn+1 > qX(α)
)
dFσ(s) fε(z)dz

=
∫ ∞

0

∫ ∞

s=z−1
P
(√

qX(α)−2ω + (az2 + b)s2 εn+1 > 1
)
dGα(s) fε(z)dz,

where Fσ is the stationary distribution of σn, and where Gα(s) :=
−α−1Fσ(qX(α)s), as before. If we let

ϕα(s, z) := P
(√

qX(α)−2ω + (az2 + b)s2 εn+1 > 1
)
,
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then we find using Lemma 2.3 with A = (az2 + b)ε2n+1 and B := ωε2n+1 that for
any fixed z > 0,

ϕα(s, z) → ϕ0(s, z) := P
(√

(az2 + b)s2 εn+1 > 1
)
, α→ 0,

uniformly on {s ≥ z−1}. Note that in the present situation, dGα is a positive
measure on (0,∞), not just on [1,∞). However, the total mass of Gα on each
fixed interval [z−1,∞) with z > 0 still stays uniformly bounded as α → 0, since
−Gα(z−1) = α−1F (q(α)z−1)) ≤ Czκ, by (3.3) and (3.4). Hence∫ ∞

z−1
(ϕα(s, z)− ϕ0(s, z)) dGα(s) → 0,

as α→ 0, for all z > 0. We next observe that∣∣∣∣∫ ∞

z−1
(ϕα(s, z)− ϕ0(s, z))dGα(s)

∣∣∣∣ ≤ 2|Gα(z−1)| ≤ CzκX .

Since
∫∞
0
zκXfε(z)dz <∞, dominated convergence implies that∫ ∞

0

∫ ∞

z−1
(ϕα(s, z)− ϕ0(s, z)) fε(z) dGα(s)dz → 0,

first as an iterated integral and then, by Fubini, as a double integral. Next, arguing
as in the proof of Lemma 2.4, we find that as α > 0,∫ ∞

a

ϕ(s) dGα(s) → E (max(ε, 0)κX )−1
κX

∫ ∞

a

ϕ(s) s−κX−1ds,

for any a > 0 and any continuous function ϕ on [a,∞) having an integrable
derivative. In particular, for any fixed z > 0,∫ ∞

z−1
ϕ0(s, z) dGα(s) → κX (max(ε, 0)κX )−1

∫ ∞

z−1
ϕ0(s, z) s−κX−1ds,

since ϕ0(s, z) = F ε
(
(az2 + b)−1/2s−1/2

)
is differentiable in s, with integrable de-

rivative on [z−1,∞). It then follows easily, by dominated convergence again, that

lim
α→0

λXn+1|Xn
(α) = κX E (max(ε, 0)κX )−1 ·∫ ∫

sz>1,s>0

P
(
s
√
az2 + b εn+1 > 1

)
fε(z) s−κX−1 ds dz. (3.5)

We briefly check the convergence of (3.5): the integral is equal to

κX
E (max(ε, 0)κX )

∫ ∞

0

(∫ ∞

z−1
P(s
√
az2 + bεn+1 > 1) s−κX−1ds

)
fε(z) dz,

and since probabilities are bounded by 1, the inner integral is bounded by κ−1
X zκ,

and the whole expression by
1

E (max(ε, 0))κ

∫ ∞

0

zκfε(z) dz = 1,

as of course it should, since (3.5) represents a limit of probabilities.
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By Fubini, we can also express λXn+1|Xn
by the alternative formula

λXn+1|Xn
=

κX
E (max(ε, 0)κX )

∫ ∞

0

P
(
εn+1

√
aε2n + b > s−1, εn > s−1

) ds

sκX+1
.

In this form the formula easily generalizes to arbitrary lags, and we can state the
following theorem:

Theorem 3.1. Let (Xn, σn) be a strictly stationary GARCH(1, 1) such that the SRE
for σ2

n satisfies the conditions for Kesten’s theorem, with tail-index κσ2 . Suppose
that the GARCH’s innovations εn possess a probability density, and let κX := 2κσ2 .
Then

λXn+p|Xn =
κX

E (max(ε, 0)κX )

Z ∞

0

P

 
εn+p

p−1Y
j=0

(aε2n+j + b)1/2 > s−1, εn > s−1

!
ds

sκX+1
.

Proof. It is probably easiest to first observe that Xn+p = σn+pεn+p, where σ2
n+p

is related to σn by an linear SRE of the form

σ2
n+p = An+p;nσ

2
n +Bn+p;n,

(found by iterating (3.2)), and then repeat our computation of λXn+1|Xn
above.

Note that

An+p;n =
p−1∏
j=0

An+j =
p−1∏
j=0

(aε2n+j + b);

we will not need the explicit expression for Bn+p;n. Arguing as before we then find
that

λXn+p|Xn
=

κX
E (max(ε, 0)κX )

∫ ∞

0

∫ ∞

s−1

P

 s εn+p

p−1∏
j=1

(aε2n+j + b)1/2(az2
n + b)1/2 > 1

 fεn(zn) dzn
ds

sκX+1
,

which is Theorem 3.1. �

Remark 3.2. We can write λXn+p|Xn
more explicitly as

κX
E (max(ε, 0)κX )

∫
s>0

∫
zn>s−1

∫
Rp−1

F ε

s−1

p−1∏
j=0

(az2
n+j + b)−1/2


p−1∏
j=0

fε(zn+j)
p−1∏
j=0

dzn+j
ds

sκX+1
.
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We verify that for b = 0, this formula reduces to formula (2.12) for an ARCH(1).
In fact, setting b = 0, and changing variables to y = zns, the integral becomes

κX
E (max(ε, 0)κX )

∫ ∞

0

∫ ∞

1

∫
Rp−1

F ε

a−p/2
p−1∏
j=1

|zn+j |−1

 y−1


fε(s−1y)

p−1∏
j=1

fε(zn+j)
p−1∏
j=1

dzn+j dy
ds

sκX+2
,

and we can carry out the s-integration:∫ ∞

0

fε(s−1y)
ds

sκX+2
= y−κX−1

∫ ∞

0

fε(w)wκX dw

= E (max(ε, 0)κX ) y−κX−1.

We therefore find that λXn+p|Xn
equals

κX

∫ ∞

1

∫
Rp−1

F ε

a−p/2
p−1∏
j=1

|zn+j |−1

 y−1

 p−1∏
j=1

fε(zn+j)
p−1∏
j=1

dzn+j
dy

yκX+1
,

which is (2.12).

We finally note the following analogue of Theorem 2.2 for stationary
GARCH(1,1) processes which generalizes [3, Theorem 5] for ARCH(1)’s:

Theorem 3.3. For a strictly stationary GARCH(1,1) as in Theorem 3.1 but now
with εn only required to have a continuous cumulative probability distribution, we
have that λ

ψ

Xn+p|Xn
= P(ε > 0), for all ψ such that α = o(ψ(α)) for α→ 0 and all

p ≥ 1.

The proof is similar to the proof of Theorem 3.1, starting off from

P (Xn+1 > qX(ψ(α)) |Xn > qX(α))

=
∫ ∞

0

∫ ∞

z−1
P
(√

qX(α)−2ω + (az2 + b)s2 εn+1 >
qX(ψ(α))
qX(α)

)
dGα(s) fε(z)dz,

and using that the probability in the integrand of this integral now tends to
P(εn+1 > 0). Since ∫ ∞

z−1
dGα(s) → (max(ε, 0)κX )−1

zκ,

the theorem follows. Details are left to the reader.
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