5 research outputs found

    Sphingosine-1-phosphate as a key player of insulin secretion induced by high-density lipoprotein treatment.

    Get PDF
    Beta cell failure is one of the most important features of type 2 diabetes mellitus (T2DM). High-density lipoprotein (HDL) has been proposed to improve β-cell function. However, the mechanisms involved in this process are still poorly understood. The aim of this study was to investigate the contribution of sphingosine-1-phosphate (S1P) in the impact of HDL treatment on insulin secretion by pancreatic β-cells and to determine its mechanisms. Primary cultures of β-cells isolated from rat were treated with or without HDL in the presence or absence of S1P pathway inhibitors and insulin secretion response was analyzed. The S1P content of HDL (HDL-S1P) isolated from T2DM patients was analyzed and correlated to the HDL-induced insulin secretion. The expression of genes involved in the biosynthesis of the insulin was also evaluated. HDL as well as S1P treatment enhanced glucose-stimulated insulin secretion (GSIS). In HDL isolated from T2DM patients, while HDL-S1P was strongly correlated to its pro-secretory capacity (r = 0.633, p = 0.005), HDL-cholesterol and apolipoprotein AI levels were not. HDL-induced GSIS was blocked by the S1P1/3 antagonist but not by the S1P2 antagonist, and was also accompanied by increased intracellular S1P in β-cells. We also observed that HDL improved GSIS without significant changes in expression levels of insulin biosynthesis genes. Our present study highlights the importance HDL-S1P in GSIS in T2DM patients and demonstrates that HDL induces insulin secretion by a process involving both intra- and extra-cellular sources of S1P independently of an effect on insulin biosynthesis genes

    Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury.

    Get PDF
    BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte

    High-density lipoprotein-associated sphingosine-1-phosphate activity in heterozygous familial hypercholesterolaemia.

    No full text
    Patients with heterozygous familial hypercholesterolaemia (FH) suffer from high plasma cholesterol and an environment of increased oxidative stress. We examined its potential effects on high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) content (HDL-S1P) and HDL-mediated protection against oxidative stress, both with and without statin treatment. In a case-control study, HDL was isolated from 12 FH patients with and without statin treatment and from 12 healthy controls. The HDL-S1P content and the capacity of HDL to protect cardiomyocytes against oxidative stress in vitro were measured. HDL-associated S1P was significantly correlated with cell protection, but not with HDL-cholesterol or apolipoprotein AI. The latter did not correlate with HDL-mediated cell protection. Neither the HDL-S1P content nor HDL protective capacity differed between nontreated FH patients and controls. The relative amounts of apolipoprotein AI and apolipoprotein M were similar between controls and FH patients. Statin treatment had no effect on any of these measures. The FH environment is not detrimental to HDL-S1P content or HDL-S1P-mediated cell protection. Statin treatment does not modulate HDL function in this regard

    Identification of Differential Transcriptional Patterns in Primary and Secondary Hyperparathyroidism.

    No full text
    Hyperparathyroidism is associated with hypercalcemia and the excess of parathyroid hormone secretion; however, the alterations in molecular pattern of functional genes during parathyroid tumorigenesis have not been unraveled. We aimed at establishing transcriptional patterns of normal and pathological parathyroid glands (PGs) in sporadic primary (HPT1) and secondary hyperparathyroidism (HPT2). To evaluate dynamic alterations in molecular patterns as a function of the type of PG pathology, a comparative transcript analysis was conducted in subgroups of healthy samples, sporadic HPT1 adenoma and hyperplasia, and HPT2. Normal, adenomatous, HPT1, and HPT2 hyperplastic PG formalin-fixed paraffin-embedded samples were subjected to NanoString analysis. In silico microRNA (miRNA) analyses and messenger RNA-miRNA network in PG pathologies were conducted. Individual messenger RNA and miRNA levels were assessed in snap-frozen PG samples. The expression levels of c-MET, MYC, TIMP1, and clock genes NFIL3 and PER1 were significantly altered in HPT1 adenoma compared with normal PG tissue when assessed by NanoString and quantitative reverse transcription polymerase chain reaction. RET was affected in HPT1 hyperplasia, whereas CaSR and VDR transcripts were downregulated in HPT2 hyperplastic PG tissue. CDH1, c-MET, MYC, and CaSR were altered in adenoma compared with hyperplasia. Correlation analyses suggest that c-MET, MYC, and NFIL3 exhibit collective expression level changes associated with HPT1 adenoma development. miRNAs, predicted in silico to target these genes, did not exhibit a clear tendency upon experimental validation. The presented gene expression analysis provides a differential molecular characterization of PG adenoma and hyperplasia pathologies, advancing our understanding of their etiology

    Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection.

    No full text
    OBJECTIVE: The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. APPROACH AND RESULTS: We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. CONCLUSIONS: Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature
    corecore