107 research outputs found

    Towards stable single-atom catalysts: Strong binding of atomically dispersed transition metals on the surface of nanostructured ceria

    Get PDF
    The interaction of a series of different transition metal atoms with nanoparticulate CeO2 has been studied by means of density-functional calculations. Recently, we demonstrated the ability of sites exposed on {100} nanofacets of CeO2 to very strongly anchor atomic Pt, making the formed species exceptionally efficient single-atom anode catalysts for proton-exchange membrane fuel cells. Herein, we analyzed the capacity of these surface sites to accommodate all other group VIII-XI transition metal atoms M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu, Ag, and Au. The interaction of the M atoms with {100} nanofacets of ceria leads to oxidation of the former and such interaction is calculated to be stronger than the binding of the atoms in the corresponding metal nanoparticles. Comparing the stability of metal-metal and metal-oxide bonds allows one to establish which metals would more strongly resist agglomeration and hence allows the proposal of promising candidates for the design of single-atom catalysts. Indeed, the remarkable stability of these adsorption complexes (particularly for Pt, Pd, Ni, Fe, Co, and Os) strongly suggests that atomically dispersed transition metals anchored as cations on {100} facets of nanostructured ceria are stable against agglomeration into metal particles. Therefore, these sites appear to be of immediate relevance to the preparation of stable catalysts featuring the highest possible metal efficiency in nanocatalysis

    Band gap engineering by Bi intercalation of graphene on Ir(111)

    Get PDF
    We report on the structural and electronic properties of a single bismuth layer intercalated underneath a graphene layer grown on an Ir(111) single crystal. Scanning tunneling microscopy (STM) reveals a hexagonal surface structure and a dislocation network upon Bi intercalation, which we attribute to a 3×3R30deg\sqrt{3}\times\sqrt{3}R30{\deg} Bi structure on the underlying Ir(111) surface. Ab-initio calculations show that this Bi structure is the most energetically favorable, and also illustrate that STM measurements are most sensitive to C atoms in close proximity to intercalated Bi atoms. Additionally, Bi intercalation induces a band gap (Eg=0.42E_g=0.42\,eV) at the Dirac point of graphene and an overall n-doping (0.39\sim 0.39\,eV), as seen in angular-resolved photoemission spectroscopy. We attribute the emergence of the band gap to the dislocation network which forms favorably along certain parts of the moir\'e structure induced by the graphene/Ir(111) interface.Comment: 5 figure

    Crystalline and electronic structure of single-layer TaS2_2

    Get PDF
    Single-layer TaS2_2 is epitaxially grown on Au(111) substrates. The resulting two-dimensional crystals adopt the 1H polymorph. The electronic structure is determined by angle-resolved photoemission spectroscopy and found to be in excellent agreement with density functional theory calculations. The single layer TaS2_2 is found to be strongly n-doped, with a carrier concentration of 0.3(1) extra electrons per unit cell. No superconducting or charge density wave state is observed by scanning tunneling microscopy at temperatures down to 4.7 K.Comment: 6 pages, 4 figure

    AgPd, AuPd, and AuPt nanoalloys with Ag- or Au-rich compositions: Modeling chemical ordering and optical properties

    Full text link
    Bimetallic nanoparticles have a myriad of technological applications, but investigations of their chemical and physical properties are precluded due to their structural complexity. Here, the chemical ordering and optical properties of AgPd, AuPd, and AuPt nanoparticles have been studied computationally. One of the main aims was to clarify whether layered ordered phases similar to L11 one observed in the core of AgPt nanoparticles [Pirart, J.; Nat. Commun. 2019, 10, 1982] are also stabilized in other nanoalloys of coinage metals with platinum-group metals, or the remarkable ordering is a peculiarity only of AgPt nanoparticles. Furthermore, the effects of different chemical orderings and compositions of the nanoalloys on their optical properties have been explored. Particles with a truncated octahedral geometry containing 201 and 405 atoms have been modeled. For each particle, the studied stoichiometries of the Ag- or Au-rich compositions, ca. 4:1 for 201-atomic particles and ca. 3:1 for 405-atomic particles, corresponded to the layered structures L11 and L10 inside the monatomic coinage-metal skins. Density functional theory (DFT) calculations combined with a recently developed topological (TOP) approach [Kozlov, S. M.; Chem. Sci. 2015, 6, 3868−3880] have been performed to study the chemical ordering of the particles, whose optical properties have been investigated using the time-dependent DFT method. The obtained results revealed that the remarkable ordering L11 of inner atoms can be noticeably favored only in small AgPt particles and much less in AgPd ones, whereas this L11 ordering in analogous Au-containing nanoalloys is significantly less stable compared to other calculated lowest-energy orderings. Optical properties were found to be more dependent on the composition (concentration of two metals) than on the chemical ordering. Both Pt and Pd elements promote the quenching of the plasmon

    Chemical ordering in Pt-Au, Pt-Ag and Pt-Cu nanoparticles from density functional calculations using a topological approach

    Full text link
    Bimetallic alloys are actively investigated as promising new materials for catalytic and other energy-related applications. However, the stable arrangements of the two metals in prevailing nanostructured systems, which define their structure and surface reactivity, are seldom addressed. The equilibrium chemical orderings of bimetallic nanoparticles are usually different from those in the corresponding bulk phases and hard to control experimentally, which hampers assessment of the relations between composition, structure, and reactivity. Herewith, we study mixtures of platinum an essential metal in catalysis alloyed with coinage metals gold, silver, and copper. These systems are interesting, for instance, for reducing the costly Pt content and designing improved multifunctional catalysts, but the chemical orderings in such mixtures at the nanoscale are still debated. We therefore explore chemical orderings and properties of Pt-containing nanoalloys by means of a topological method based on density functional calculations. We determine the lowest-energy chemical orderings in 1.4 to 4.4 nm large Pt-Au, Pt-Ag and Pt-Cu particles with different contents of metals. Chemical ordering, bonding, and charge distribution in the nanoparticles are analyzed, identifying how peculiar structural motifs relevant for catalysis and sensing applications, such as monometallic skins and surface single-atom sites, emerge. We compare these results with previous data for the corresponding Pd-based particles, identifying trends in chemical ordering, deepening understanding of the behaviour of catalytically relevant bimetallic compositions, and establishing appropriate models for studying the bimetallic nanoalloys

    In Situ Detection of Active Edge Sites in Single-Layer MoS2_2 Catalysts

    Full text link
    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in-situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counter-intuitively towards higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions

    Charting the Atomic C Interaction with Transition Metal Surfaces

    Full text link
    Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow

    CO oxidation activity of Pt/CeO2 catalysts below 0ºC: Platinum loading effects

    Full text link
    Reducing the operating temperature of oxidation catalysts is important for designing energy efficient processes, extending catalyst lifetime, and abating pollutants, especially in cold climates. Herein, high CO oxidation activity at sub-ambient temperatures is reported for Pt/CeO2 catalysts with high content of Pt in the form of dispersed Pt2+ and Pt4+ centers. Whereas the reference 1 wt%Pt catalyst was active for CO oxidation only above 100ᵒC, the 8 and 20 wt%Pt catalysts converted 60 and 90 % of CO, respectively, below 0ᵒC. Ionic platinum was shown to facilitate oxygen release from ceria and lower the light-off temperature of the reaction occurring through the Mars-van-Krevelen mechanism. However, the remarkable activity observed at sub-ambient temperatures for the ≥8 wt%Pt catalysts is proposed to involve O2 and CO reactants weakly adsorbed on PtOx clusters. The synergies between ionic platinum and nanostructured ceria reported in this work advance the knowledge-driven design of catalysts for low-temperature oxidation reactions
    corecore