5 research outputs found
Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens
Plants harbor diverse microbial communities that colonize both below-ground and above-ground organs. Some bacterial members of these rhizosphere and phyllosphere microbial communities have been shown to contribute to plant defenses against pathogens. In this study, we characterize the pathogen-inhibiting potential of 78 bacterial isolates retrieved from endophytic and epiphytic communities living in the leaves of three grapevine cultivars. We selected two economically relevant pathogens, the fungus Botrytis cinerea causing gray mold and the oomycete Phytophthora infestans, which we used as a surrogate for Plasmopara viticola causing downy mildew. Our results showed that epiphytic isolates were phylogenetically more diverse than endophytic isolates, the latter mostly consisting of Bacillus and Staphylococcus strains, but that mycelial inhibition of both pathogens through bacterial diffusible metabolites was more widespread among endophytes than among epiphytes. Six closely related Bacillus strains induced strong inhibition (<60%) of Botrytis cinerea mycelial growth. Among these, five led to significant perturbation in spore germination, ranging from full inhibition to reduction in germination rate and germ tube length. Different types of spore developmental anomalies were observed for different strains, suggesting multiple active compounds with different modes of action on this pathogen. Compared with B. cinerea, the oomycete P. infestans was inhibited in its mycelial growth by a higher number and more diverse group of isolates, including many Bacillus but also Variovorax, Pantoea, Staphylococcus, Herbaspirillum, or Sphingomonas strains. Beyond mycelial growth, both zoospore and sporangia germination were strongly perturbed upon exposure to cells or cell-free filtrates of selected isolates. Moreover, three strains (all epiphytes) inhibited the pathogen’s growth via the emission of volatile compounds. The comparison of the volatile profiles of two of these active strains with those of two phylogenetically closely related, inactive strains led to the identification of molecules possibly involved in the observed volatile-mediated pathogen growth inhibition, including trimethylpyrazine, dihydrochalcone, and L-dihydroxanthurenic acid. This work demonstrates that grapevine leaves are a rich source of bacterial antagonists with strong inhibition potential against two pathogens of high economical relevance. It further suggests that combining diffusible metabolite-secreting endophytes with volatile-emitting epiphytes might be a promising multi-layer strategy for biological control of above-ground pathogens
Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection
International audienceGrapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine
A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity
Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host's health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS's protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome
Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling
Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis