28 research outputs found
Maximizing the benefits and minimizing the risks of intervention programs to address micronutrient malnutrition: symposium report.
Interventions to address micronutrient deficiencies have large potential to reduce the related disease and economic burden. However, the potential risks of excessive micronutrient intakes are often not well determined. During the Global Summit on Food Fortification, 9-11 September 2015, in Arusha, a symposium was organized on micronutrient risk-benefit assessments. Using case studies on folic acid, iodine and vitamin A, the presenters discussed how to maximize the benefits and minimize the risks of intervention programs to address micronutrient malnutrition. Pre-implementation assessment of dietary intake, and/or biomarkers of micronutrient exposure, status and morbidity/mortality is critical in identifying the population segments at risk of inadequate and excessive intake. Dietary intake models allow to predict the effect of micronutrient interventions and their combinations, e.g. fortified food and supplements, on the proportion of the population with intakes below adequate and above safe thresholds. Continuous monitoring of micronutrient intake and biomarkers is critical to identify whether the target population is actually reached, whether subgroups receive excessive amounts, and inform program adjustments. However, the relation between regular high intake and adverse health consequences is neither well understood for many micronutrients, nor do biomarkers exist that can detect them. More accurate and reliable biomarkers predictive of micronutrient exposure, status and function are needed to ensure effective and safe intake ranges for vulnerable population groups such as young children and pregnant women. Modelling tools that integrate information on program coverage, dietary intake distribution and biomarkers will further enable program makers to design effective, efficient and safe programs
Modelling health and economic impact of nutrition interventions: a systematic review
Diet related non-communicable diseases (NCDs), as well as micronutrient deficiencies, are of widespread and growing importance to public health. Authorities are developing programs to improve nutrient intakes via foods. To estimate the potential health and economic impact of these programs there is a wide variety of models. The aim of this review is to evaluate existing models to estimate the health and/or economic impact of nutrition interventions with a focus on reducing salt and sugar intake and increasing vitamin D, iron, and folate/folic acid intake. The protocol of this systematic review has been registered with the International Prospective Register of Systematic Reviews (PROSPERO: CRD42016050873). The final search was conducted on PubMed and Scopus electronic databases and search strings were developed for salt/sodium, sugar, vitamin D, iron, and folic acid intake. Predefined criteria related to scientific quality, applicability, and funding/interest were used to evaluate the publications. In total 122 publications were included for a critical appraisal: 45 for salt/sodium, 61 for sugar, 4 for vitamin D, 9 for folic acid, and 3 for iron. The complexity of modelling the health and economic impact of nutrition interventions is dependent on the purpose and data availability. Although most of the models have the potential to provide projections of future impact, the methodological challenges are considerable. There is a substantial need for more guidance and standardization for future modelling, to compare results of different studies and draw conclusions about the health and economic impact of nutrition interventions. © 2022, The Author(s)
Prenatal arachidonic acid exposure and selected immune-related variables in childhood
Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childhood. In 280 children aged 7 years, atopy, lung function and plasma inflammation markers were measured and their relationships with early AA exposure were studied by linear and logistic regression analyses. AA exposure was deduced from AA concentrations in plasma phospholipids of the mothers collected at several time points during pregnancy and at delivery, and in umbilical cord plasma and arterial and venous wall phospholipids. In unadjusted regression analyses, significant positive associations were observed between maternal AA concentrations at 16 and 32 weeks of pregnancy (proxies for fetal AA exposure) and peak expiratory flow decline after maximal physical exercise and plasma fibrinogen concentrations of their children, respectively. However, after correction for relevant covariables, only trends remained. A significant negative relationship was observed between AA concentrations in cord plasma (reflecting prenatal AA exposure) and the average daily amplitude of peak expiratory flow at rest, which lost significance after appropriate adjustment. Because of these few, weak and inconsistent relationships, a major impact of early-life exposure to AA on atopy, lung function and selected plasma inflammation markers of children at 7 years of age seems unlikely
Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study
This study applied linear programming using a Dutch “model diet” to simulate the dietary shifts needed in order to optimize the intake of vitamin D and to minimize the carbon footprint, considering the popularity of the diet. Scenarios were modelled without and with additional fortified bread, milk, and oil as options in the diets. The baseline diet provided about one fifth of the adequate intake of vitamin D from natural food sources and voluntary vitamin D-fortified foods. Nevertheless, when optimizing this diet for vitamin D, these food sources together were insufficient to meet the adequate intake required, unless the carbon emission and calorie intake were increased almost 3-fold and 2-fold, respectively. When vitamin D-fortified bread, milk, and oil were added as options to the diet, along with increases in fish consumption, and decreases in sugar, snack, and cake consumption, adequate intakes for vitamin D and other nutrients could be met within the 2000 kcal limits, along with a relatively unchanged carbon footprint. Achieving vitamin D goals while reducing the carbon footprint by 10% was only possible when compromising on the popularity of the diet. Adding vitamin D to foods did not contribute to the total carbon emissions. The modelling study shows that it is impossible to obtain adequate vitamin D through realistic dietary shifts alone, unless more vitamin D-fortified foods are a necessary part of the diet
Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study
This study applied linear programming using a Dutch “model diet” to simulate the dietary shifts needed in order to optimize the intake of vitamin D and to minimize the carbon footprint, considering the popularity of the diet. Scenarios were modelled without and with additional fortified bread, milk, and oil as options in the diets. The baseline diet provided about one fifth of the adequate intake of vitamin D from natural food sources and voluntary vitamin D-fortified foods. Nevertheless, when optimizing this diet for vitamin D, these food sources together were insufficient to meet the adequate intake required, unless the carbon emission and calorie intake were increased almost 3-fold and 2-fold, respectively. When vitamin D-fortified bread, milk, and oil were added as options to the diet, along with increases in fish consumption, and decreases in sugar, snack, and cake consumption, adequate intakes for vitamin D and other nutrients could be met within the 2000 kcal limits, along with a relatively unchanged carbon footprint. Achieving vitamin D goals while reducing the carbon footprint by 10% was only possible when compromising on the popularity of the diet. Adding vitamin D to foods did not contribute to the total carbon emissions. The modelling study shows that it is impossible to obtain adequate vitamin D through realistic dietary shifts alone, unless more vitamin D-fortified foods are a necessary part of the diet
Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits
Lactose-free dairy is able to provide the essential nutrients present in regular dairy products, like calcium and vitamins, to those that are not able to digest lactose. This product category currently has a wide and growing health appeal to consumers. In recent years, the quality and product variety in the lactose-free dairy segment has been increasing significantly, giving consumers more tempting products to decide from. As a result, lactose-free dairy is now the fastest growing market in the dairy industry. This review discusses the market developments and production possibilities and issues related to the wide variation of lactose-free dairy products that are currently available. Additionally, the health benefits that lactose-free dairy may offer compared to dairy avoidance are illustrated
The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging
An increasing aging population worldwide accounts for a growing share of noncommunicable diseases (NCDs) of the overall social and economic burden. Dietary and nutritional approaches are of paramount importance in the management of NCDs. As a result, nutrition programs are increasingly integrated into public health policies. At present, programs aimed at reducing the burden of NCDs have focused mostly on the excess of unhealthy nutrient intakes whereas the importance of optimizing adequate essential and semi-essential nutrient intakes and nutrient-rich diets has received less attention. Surveys indicate that nutrient intakes of the aging population are insufficient to optimally support healthy aging. Vitamin and mineral deficiencies in older adults are related to increased risk of NCDs including fatigue, cardiovascular disease, and cognitive and neuromuscular function impairments. Reviewed literature demonstrates that improving intake for certain nutrients may be important in reducing progress of NCDs such as musculoskeletal disorders, dementia, loss of vision, and cardiometabolic diseases during aging. Current knowledge concerning improving individual nutrient intakes to reduce progression of chronic disease is still emerging with varying effect sizes and levels of evidence. Most pronounced benefits of nutrients were found in participants who had low nutrient intake or status at baseline or who had increased genetic and metabolic needs for that nutrient. Authorities should implement ways to meet optimize essential nutrient requirements as an integral part of their strategies to address NCDs
Randomized clinical trial: Effective gluten degradation by Aspergillus niger-derived enzyme in a complex meal setting
Abstract The Aspergillus niger-derived prolyl endoprotease (AN-PEP) has previously been shown to degrade gluten in healthy subjects when added to an intragastrically infused meal. The current study investigated the efficacy of AN-PEP in a physiological meal setting. In this randomized placebo-controlled crossover study, 18 gluten-sensitive subjects consumed a porridge containing 0.5 g gluten together with two tablets either containing a high or low dose of AN-PEP, or placebo. Gastric and duodenal content was sampled over 180 minutes, and areas under the curve of gluten concentrations were calculated. The primary outcome, i.e. success rate of high dose AN-PEP defined as at least 50% gluten degradation compared to placebo in the duodenum, was achieved in 10 of 13 comparisons. In the stomach, gluten levels were reduced from 176.9 (median, interquartile range 73.5–357.8) to 22.0 (10.6–50.8, p = 0.001) in the high dose and to 25.4 μg × min/ml (16.4–43.7, p = 0.001) in the low dose. In the duodenum, gluten levels were reduced from 14.1 (8.3–124.7) in the placebo to 6.3 (3.5–19.8, p = 0.019) in the high dose and to 7.4 μg × min/ml in the low dose (3.8–12.0, p = 0.015). Thus even in a physiological meal setting, AN-PEP significantly degraded most gluten in the stomach before it entered the duodenum
Considerations for Secondary Prevention of Nutritional Deficiencies in High-Risk Groups in High-Income Countries
Surveys in high-income countries show that inadequacies and deficiencies can be common for some nutrients, particularly in vulnerable subgroups of the population. Inadequate intakes, high requirements for rapid growth and development, or age- or disease-related impairments in nutrient intake, digestion, absorption, or increased nutrient losses can lead to micronutrient deficiencies. The consequent subclinical conditions are difficult to recognize if not screened for and often go unnoticed. Nutrient deficiencies can be persistent despite primary nutrition interventions that are aimed at improving dietary intakes. Secondary prevention that targets groups at high risk of inadequacy or deficiency, such as in the primary care setting, can be a useful complementary approach to address persistent nutritional gaps. However, this strategy is often underestimated and overlooked as potentially cost-effective means to prevent future health care costs and to improve the health and quality of life of individuals. In this paper, the authors discuss key appraisal criteria to consider when evaluating the benefits and disadvantages of a secondary prevention of nutrient deficiencies through screening