22 research outputs found

    Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride:Implications of fish size, feeding mode and habitat use

    Get PDF
    Erosion rates and sources of sediment ingested were quantified for the 2 most abundant parrotfish species on a leeward fringing reef of Bonaire, Netherlands Antilles: Scarus vetula and Sparisoma viride. Direct estimates of erosion by different size classes were obtained from daily feeding rates and grazing scar frequency, scar volume and substrate density. Foraging preference and distribution of fish on the reef were used to examine patterns of bioerosion at 2 spatial scales: reef zones and individual substrates used for grazing. Sediment mass ingested by fish provided an independent check on erosion rates, and was partitioned according to source. S. vetula, employing a scraping feeding mode, removed less material from grazed substrates than similar sized S. viride, which forages by excavating the substrate. Erosion rates increased strongly with fish size in both species. The (indigestible) carbonate derived from epilithic algae accounted for all sediment ingested by juvenile fish. In adult fish, the proportion of freshly eroded carbonate substrate ingested increased with fish size. The distribution of adults of these large scarids over different reef zones determines the rate of bioerosion on a large spatial scale. The highest bioerosional rates occur on the shallow reef (ca 7 kg m(-2) yr(-1)), and they decrease with depth. Parrotfish foraging preferences, and the effects of food type and skeletal density of substrates on the size of the grazing scars, cause large differences in bioerosional rates on a small spatial scale. The highest rates of bioerosion occur on substrates infested with boring algae and of low skeletal density, while high-density substrates and substrates covered with crustose corallines undergo lower rates. Living coral is rarely eaten by scarids, and largely escapes erosion by grazing

    Plastic growth of the herbivorous reef fish Sparisoma viride: field evidence for a trade-off between growth and reproduction

    Get PDF
    The growth of different Life phases and social categories of the protogynous parrotfish Sparisoma viride was studied on a fringing reef on Bonaire (Netherlands Antilles) using mark-recapture procedures and by taking repeated stereographic measurements of free-swimming fish. Weight-growth was best described by the Putter/von Bertalanffy growth equation for all categories, allowing comparison of specific growth rates (dW/Wdt) using analysis of covariance with W-(1/3) as the covariate. Growth was retarded by Peterson discs, but no effect of fin clips was detected. Adjusted for size differences, growth of juveniles was fastest, followed by sexually inactive terminal phase (TP) males living in groups. Initial phase (IP) females and territorial TP males (spawning daily) showed the lowest growth rates. Growth rate of territorial males was negatively correlated with their average spawning rate. All adult categories showed seasonal variations in growth, the highest rates occurring in the warmest season (August to October). A possible effect of depth on growth is confounded by differences in social and reproductive status. Growth of group TP males showed a weak positive correlation with their condition. Gross growth efficiencies were estimated by combining data on growth and body composition with previously published data on food intake and assimilation. Growth efficiency is highest for protein, ranging from 50.6% of food intake for juveniles to 0.12% for territorial males. Corresponding values are 6.25 to 0.01% for ash-free dry weight and 7.9 to 0.01% for energy. The high abundance of small, sexually inactive group TP males (early sex-changers) in our S. viride population is related to their fast growth. We suggest that these 'bachelors' trade growth against current reproduction and thereby enhance their chance to acquire the status of a territorial male with high reproductive success. Insight into intraspecific variation in growth improves the accuracy of trophodynamic models and increases our understanding of complex Life history patterns in fish

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    Inaugural Meeting

    No full text
    Quantitative data are presented to assess the trophic role of scarids on the fringing coral reef of Bonaire (Netherlands Antilles): with particular emphasis on the stoplight parrotfish Sparisoma viride. Average herbivore biomass on the reef was 690 kg ha(-1), 22% of which was accounted for by S. viride. From data on relative gonad weights, daily spawning frequencies, and egg numbers obtained by stripping, with previous estimates of somatic growth and energy intake, a gross efficiency (GE: somatic plus gamete production/consumption) of 23% was obtained. This is a factor of five to seven lower than the GE suggested to be valid for most aquatic ecosystems, including coral reefs. To investigate one potential cause for our low estimate, overestimation of food intake, our intake estimates were compared with published values for other herbivorous coral reef Bah. This yielded a relationship (daily C intake = 0.0342 x W(0.816); wet body mass W in g) with high correlation (r(2) = 94.6%, n = 13), which shows that the intake estimates agree well with other published data. Averaged over the year, primary production at 0-3 m depth was 17.2 kg C ha(-1) day(-1) while herbivore consumption was estimated at 17.4 kg C ha(-1) day(-1), indicating an ecotrophic efficiency (EE, the fraction of total production at one trophic level that is consumed by all predators) of 100%. This suggests strongly that the food intake estimates are realistic, since no changes in algal biomass were observed over the study period. The two scarids for which food intake was actually measured in our own study area, were estimated to consume 55% of the algal production in the shallow reef (S. viride, 20%; Scarus vetula, 35%). This is lower than expected if consumption were proportional to biomass (S. vb ide, 22%; S. vetula, 40% of herbivore biomass in the shallow reef). Consequently, a minimum estimate of 88-91% can be inferred for the EE of these two species. Multiplied by GE, this yields a transfer efficiency (TE, the fraction of production passing from one trophic level to the next) of 2%. For coastal and coral systems the primary production required (PPR) to sustain fisheries was estimated to be 8.3%, which was based on a TE of 10%. The present estimates show that the TE of a major herbivore at our reef is at least a factor of five lower. Assuming that the estimate is representative for all scarids (comprising 70% of the herbivore standing stock), it can be concluded that the PPR to sustain coral reef fisheries may be as high as 40% of the total primary production. The low value reported before, might suggest that the effect of fishing mainly affects target populations but not the lowest trophic levels. II is argued that our estimate is more realistic for coral reefs supporting high scarid biomass and explains better the many reports of coral destruction due to algal overgrowth at exploited reefs. (C) 1998 The Fisheries Society of the British Isles

    Ontogenetic, social, spatial and seasonal variations in condition of the reef herbivore Sparisoma viride

    Get PDF
    We studied the condition of stoplight parrotfish, Sparisoma viride, collected from the fringing reef of Bonaire (Netherlands Antilles) between March 1987 and October 1991. To this end, we compared length-weight relationships using analysis of covariance. The condition of different life phases [juveniles, initial phase (IF) and terminal phase (TP) adults] and social categories (territorial and group adults) is compared in different seasons, taking into account spatial variability along a depth gradient. Variations in condition are related to differences in behaviour, the use of space and the distribution of food. The average length-weight relationship of fish with empty guts is described by the equation: W-Empty - 9.115 x 10(-6) x FL(3.140) (n = 386, R(2) = 99.82%, W in g, FL in mm). Territorial TP males were found to be in poorest condition, whereas (sexually inactive) group TP showed the best and IP fish an intermediate condition. These differences are ascribed to varying investments in territory defence and reproduction, which affect condition more than, the vertical distribution of food. All categories were Sn minimum condition between May and July, the season with longest day lengths and increasing water temperatures. This seasonal effect cannot be ascribed to increased reproductive effort and suggests that the higher energetic demands due to the longer active period of fish are not completely met by increased food uptake. It is inferred that food may be a limiting factor at times

    A twice daily posaconazole dosing algorithm for children with chronic granulomatous disease

    No full text
    Contains fulltext : 96602.pdf (publisher's version ) (Closed access)Posaconazole (PSZ) may be an attractive alternative for antifungal prophylaxis in children with chronic granulomatous disease. Experience with PSZ in pediatric patients is limited, and no specific dose recommendations exist. A twice daily dosing algorithm based on allometric scaling (body-weight based) for PSZ results in adequate exposure and appears to be safe in children with chronic granulomatous disease
    corecore