267 research outputs found
The fundamental equations of change in statistical ensembles and biological populations
A recent article in Nature Physics unified key results from thermodynamics,
statistics, and information theory. The unification arose from a general
equation for the rate of change in the information content of a system. The
general equation describes the change in the moments of an observable quantity
over a probability distribution. One term in the equation describes the change
in the probability distribution. The other term describes the change in the
observable values for a given state. We show the equivalence of this general
equation for moment dynamics with the widely known Price equation from
evolutionary theory, named after George Price. We introduce the Price equation
from its biological roots, review a mathematically abstract form of the
equation, and discuss the potential for this equation to unify diverse
mathematical theories from different disciplines. The new work in Nature
Physics and many applications in biology show that this equation also provides
the basis for deriving many novel theoretical results within each discipline
Effective bet-hedging through growth rate dependent stability
Microbes in the wild face highly variable and unpredictable environments and are naturally selected for their average growth rate across environments. Apart from using sensory regulatory systems to adapt in a targeted manner to changing environments, microbes employ bet-hedging strategies where cells in an isogenic population switch stochastically between alternative phenotypes. Yet, bet-hedging suffers from a fundamental trade-off: Increasing the phenotype-switching rate increases the rate at which maladapted cells explore alternative phenotypes but also increases the rate at which cells switch out of a well-adapted state. Consequently, it is currently believed that bet-hedging strategies are effective only when the number of possible phenotypes is limited and when environments last for sufficiently many generations. However, recent experimental results show that gene expression noise generally decreases with growth rate, suggesting that phenotype-switching rates may systematically decrease with growth rate. Such growth rate dependent stability (GRDS) causes cells to be more explorative when maladapted and more phenotypically stable when well-adapted, and we show that GRDS can almost completely overcome the trade-off that limits bet-hedging, allowing for effective adaptation even when environments are diverse and change rapidly. We further show that even a small decrease in switching rates of faster-growing phenotypes can substantially increase long-term fitness of bet-hedging strategies. Together, our results suggest that stochastic strategies may play an even bigger role for microbial adaptation than hitherto appreciated
A Data Integration and Visualization Resource for the Metabolic Network of Synechocystis sp. PCC 6803
Data integration is a central activity in systems biology. The integration of genomic, transcript, protein, metabolite, flux, and computational data yields unprecedented information about the system level functioning of organisms. Often, data integration is done purely computationally, leaving the user with little insight besides statistical information. In this article, we present a visualization tool for the metabolic network of Synechocystis PCC6803, an important model cyanobacterium for sustainable biofuel production. We illustrate how this metabolic map can be used to integrate experimental and computational data for Synechocystis systems biology and metabolic engineering studies. Additionally, we discuss how this map, and the software infrastructure that we supply with it, can be used in the development of other organism-specific metabolic network visualizations. Besides a Python console package VoNDA (http://vonda.sf.net), we provide a working demonstration of the interactive metabolic map and the associated Synechocystis genome-scale stoichiometric model, as well as various ready-to-visualize microarray data sets, at http://f-a-m-e.org/synechocystis/
Understanding start-up problems in yeast glycolysis
Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient concentration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance. We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis is parameter-free, i.e., without assigning a numerical value to any of the parameters. The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states, but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the influence of the redox balance
Mechanistic stochastic model of histone modification pattern formation
BACKGROUND: The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynamics of histone modifications and the persistence of modification patterns for long periods are still largely unknown. RESULTS: In this study, we present a stochastic mathematical model that describes the molecular mechanisms of histone modification pattern formation along a single gene, with non-phenomenological, physical parameters. We find that diffusion and recruitment properties of histone modifying enzymes together with chromatin connectivity allow for a rich repertoire of stochastic histone modification dynamics and pattern formation. We demonstrate that histone modification patterns at a single gene can be established or removed within a few minutes through diffusion and weak recruitment mechanisms of histone modification spreading. Moreover, we show that strong synergism between diffusion and weak recruitment mechanisms leads to nearly irreversible transitions in histone modification patterns providing stable patterns. In the absence of chromatin connectivity spontaneous and dynamic histone modification boundaries can be formed that are highly unstable, and spontaneous fluctuations cause them to diffuse randomly. Chromatin connectivity destabilizes this synergistic system and introduces bistability, illustrating state switching between opposing modification states of the model gene. The observed bistable long-range and localized pattern formation are critical effectors of gene expression regulation. CONCLUSION: This study illustrates how the cooperative interactions between regulatory proteins and the chromatin state generate complex stochastic dynamics of gene expression regulation
Fast Flux Module Detection Using Matroid Theory
International audienceFlux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by MĂĽller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks
L’édifice religieux : lieu de pouvoir, pouvoir du lieu
Lieu de pouvoir, l’édifice religieux est avant tout le lieu du pouvoir, celui de Dieu, autour duquel se regroupent ministres et fidèles, un lieu privilégié où l’approche du sacré doit révéler aux hommes leur dimension véritable. Si l’on y recherche une vérité spirituelle, s’y exprime également une réalité sociale et politique, parfois même de manière flagrante, comme le rappelait ce bénitier du XIIIe siècle conservé au musée d’Angers, par une inscription latine qui fut ainsi traduite : « pour..
Toward a quantitative in silico model for the E. coli ammonium assimilation system
The Third BMIRC International Symposium for Virtual Physiological Human, March 5-6, 2015, Iizuka, Japa
- …