33 research outputs found

    Inhibition of PI3K-Akt Signaling Blocks Exercise-Mediated Enhancement of Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus

    Get PDF
    Physical exercise has been shown to increase adult neurogenesis in the dentate gyrus and enhances synaptic plasticity. The antiapoptotic kinase, Akt has also been shown to be phosphorylated following voluntary exercise; however, it remains unknown whether the PI3K-Akt signaling pathway is involved in exercise-induced neurogenesis and the associated facilitation of synaptic plasticity in the dentate gyrus.To gain insight into the potential role of this signaling pathway in exercise-induced neurogenesis and LTP in the dentate gyrus rats were infused with the PI3K inhibitor, LY294002 or vehicle control solution (icv) via osmotic minipumps and exercised in a running wheel for 10 days. Newborn cells in the dentate gyrus were date-labelled with BrdU on the last 3 days of exercise. Then, they were either returned to the home cage for 2 weeks to assess exercise-induced LTP and neurogenesis in the dentate gyrus, or were killed on the last day of exercise to assess proliferation and activation of the PI3K-Akt cascade using western blotting.Exercise increases cell proliferation and promotes survival of adult-born neurons in the dentate gyrus. Immediately after exercise, we found that Akt and three downstream targets, BAD, GSK3beta and FOXO1 were activated. LY294002 blocked exercise-induced phosphorylation of Akt and downstream target proteins. This had no effect on exercise-induced cell proliferation, but it abolished most of the beneficial effect of exercise on the survival of newly generated dentate gyrus neurons and prevented exercise-induced increase in dentate gyrus LTP. These results suggest that activation of the PI3 kinase-Akt signaling pathway plays a significant role via an antiapoptotic function in promoting survival of newly formed granule cells generated during exercise and the associated increase in synaptic plasticity in the dentate gyrus

    Neurogenèse hippocampique chez le rat adulte (rôle fonctionnel dans la mémoire et relation avec la plasticité synaptique)

    No full text
    LE KREMLIN-B.- PARIS 11-BU MĂ©d (940432101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment

    No full text
    Although thousands of new neurons are continuously produced in the dentate gyrus of rodents each day, the function of these newborn cells remains unclear. An increasing number of reports have provided correlational evidence that adult hippocampal neurogenesis is involved in learning and memory. Exposure of animals to an enriched environment leads to improvement of performance in several learning tasks and enhances neurogenesis specifically in the hippocampus. These data raise the question of whether new neurons participate in memory improvement induced by enrichment. To address this issue, we have examined whether the increase in the number of surviving adult-generated cells following environmental enrichment contributes to improved memory function. To this end, neurogenesis was substantially reduced throughout the environmental enrichment period using the antimitotic agent methylazoxymethanol acetate (MAM). Recognition memory performance of MAM-treated enriched rats was evaluated in a novel object recognition task and compared with that of naive and nontreated enriched rats. Injections of 5-bromo-2'-deoxyuridine were used to label dividing cells, together with double immunofluorescent labelling using glial or neuronal cell-specific markers. We found that enrichment led to improved long-term recognition memory and increased hippocampal neurogenesis, and that MAM treatment during environmental enrichment completely prevented both the increase in neurogenesis and enrichment-induced long-term memory improvement. These results establish that newborn cells in the dentate gyrus contribute to the expression of the promnesic effects of behavioural enrichment, and they provide further support for the idea that adult-generated neurons participate in modulating memory function

    Brain plasticity mechanisms and memory : a party of four.

    No full text
    International audienceA defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodeling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that the neurobiological substrate of memories resides in activity-driven modifications of synaptic strength and structural remodeling of neural networks activated during learning. Since the discovery of long-term potentiation, the role of synaptic strengthening in learning and memory has been the subject of considerable investigation, and numerous studies have provided new insights into how this form of plasticity can subserve memory function. At the same time, other studies have explored the contribution of synaptic elimination or weakening; synaptogenesis, the growth of new synaptic connections and synapse remodeling; and more recently, neurogenesis, the birth and growth of new neurons in the adult brain. In this review, based on work in the hippocampus, the authors briefly outline recent advances in their understanding of the mechanisms and functional role of these four types of brain plasticity in the context of learning and memory. While they have long been considered as alternative mechanisms of plasticity underlying the storage of long-term memories, recent evidence suggests that they are functionally linked, suggesting the mechanisms underlying plasticity in the brain required for the formation and retention of memories are multifaceted

    Adult hippocampal neurogenesis, synaptic platicity and memory: Facts and hypotheses.

    No full text
    International audienceThe demonstration that progenitor cells in regions of the adult mammalian brain such as the dentate gyrus of the hippocampus can undergo mitosis and generate new cells that differentiate into functionally integrated neurons throughout life has marked a new era in neuroscience. In recent years, a wide range of investigations has been directed at understanding the physiological mechanisms and functional relevance of this form of brain plasticity. Our current knowledge of adult hippocampal neurogenesis indicates that the production of new cells in the brain follows a multi-step process during which newborn cells are submitted to various regulatory factors that influence cell proliferation, maturation, fate determination and survival. As details of the dynamics of morphological maturation and functional integration of newborn neurons in corticohippocampal circuits have become clearer, an increasing number of studies have examined how environmental and/or behavioural factors can modulate neurogenesis and affect hippocampal-dependent learning and memory. In this article we present an overview of recent literature that relates neurogenesis to hippocampal function on the basis of correlative studies investigating the modulation of neurogenesis by learning and behavioural experience, and the consequences of the loss of hippocampal neurogenesis for memory function. We also highlight experimental evidence that immature neurons exhibit unique electrophysiological characteristics and therefore may constitute a specific cell population particularly inclined to undergo activity-dependent plasticity. Moreover, we review recent work that reveals an unsuspected mechanistic link between synaptic plasticity and the proliferation and survival of new hippocampal neurons. From the present background of research, we argue that the incorporation of functional adult-generated neurons into existing neural networks provides a higher capacity for plasticity, which may favour the encoding and storage of certain types of memories. Depending on their birth date and maturation stage, new neurons might be implicated in the encoding/storage process of the task at hand or may help future learning experience. Finally, we highlight critical issues to be addressed in order to decipher the exact contribution of newly generated neurons to cognitive functions

    Long-Term Potentiation Enhances Neurogenesis in the Adult Dentate Gyrus

    No full text
    International audienceActivity-dependent synaptic plasticity and neurogenesis are two forms of brain plasticity that can participate in functional remodeling of neural networks during the formation of memories. We examined whether long-term potentiation (LTP) of excitatory synaptic transmission, a well characterized form of synaptic plasticity believed to play a critical role in memory formation, can regulate the rate of neurogenesis in the adult rat dentate gyrus in vivo. We first show that induction of LTP at medial perforant path-granule cell synapses stimulates the proliferation of progenitor cells in the dentate gyrus with a consequential long-term persistence of a larger population of surviving newborn cells. Using protocols to examine the effect of LTP on survival, we next show that LTP induction promotes survival of 1- to 2-week-old dentate granule cells. In no case did LTP appear to affect neuronal differentiation. Finally, we show that LTP induces expression of the plasticity-related transcription factor Zif268 in a substantial fraction of 2-week-old but not 1-week-old neurons, suggesting the prosurvival effect of LTP can be observed in the absence of LTP-mediated Zif268 induction in newborn cells. Our results indicate that electrically induced LTP in the dentate gyrus in vivo provides a cellular/molecular environment that favors both proliferation and survival of adult-generated neurons

    Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    Get PDF
    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX

    Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects

    Get PDF
    International audienceMutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal-and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability
    corecore