38 research outputs found

    Perspectives in Microvascular Fluid Handling: Does the Distribution of Coagulation Factors in Human Myocardium Comply with Plasma Extravasation in Venular Coronary Segments?

    Get PDF
    Background: Heterogeneity of vascular permeability has been suggested for the coronary system. Whereas arteriolar and capillary segments are tight, plasma proteins pass readily into the interstitial space at venular sites. Fittingly, lymphatic fluid is able to coagulate. However, heart tissue contains high concentrations of tissue factor, presumably enabling bleeding to be stopped immediately in this vital organ. The distribution of pro- and anti-coagulatively active factors in human heart tissue has now been determined in relation to the types of microvessels. Methods and Results: Samples of healthy explanted hearts and dilated cardiomyopathic hearts were immunohistochemically stained. Albumin was found throughout the interstitial space. Tissue factor was packed tightly around arterioles and capillaries, whereas the tissue surrounding venules and small veins was practically free of this starter of coagulation. Thrombomodulin was present at the luminal surface of all vessel segments and especially at venular endothelial cell junctions. Its product, the anticoagulant protein C, appeared only at discrete extravascular sites, mainly next to capillaries. These distribution patterns were basically identical in the healthy and diseased hearts, suggesting a general principle. Conclusions: Venular extravasation of plasma proteins probably would not bring prothrombin into intimate contact with tissue factor, avoiding interstitial coagulation in the absence of injury. Generation of activated protein C via thrombomodulin is favored in the vicinity of venular gaps, should thrombin occur inside coronary vessels. This regionalization of distribution supports the proposed physiological heterogeneity of the vascular barrier and complies with the passage of plasma proteins into the lymphatic system of the heart. Copyright (C) 2010 S. Karger AG, Base

    MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers, but the influence of microRNA (miRNA) expression has only been sporadically analysed. We hypothesized that miRNAs are differentially expressed in cSCC and hence influence its development. We therefore isolated total miRNA from well-differentiated cSCCs and from controls without SCC. Expression analyses of 12 miRNAs showed three significantly differentially expressed miRNAs. We identified a significant upregulation of the miR-21 and the miR-31, a proto-oncogene like miR-21. While the upregulated expression of miR-21 has been known for some time, the increased expression of miR-31 was never shown so clearly. Furthermore, we showed the upregulation of miRNA-205, which has never been described before. The miR-205 induces specific keratinocyte migration and could be a characteristic marker for cSCC. It has to be determined in following studies whether these upregulated expressions are specific for cSCC and if so, for which cSCC stages

    Indocyanine Green Plasma Disappearance Rate During the Anhepatic Phase of Orthotopic Liver Transplantation

    Get PDF
    Non-invasive pulse spectrophotometry to measure indocyanine green (ICG) elimination correlates well with the conventional invasive ICG clearance test. Nevertheless, the precision of this method remains unclear for any application, including small-for-size liver remnants. We therefore measured ICG plasma disappearance rate (PDR) during the anhepatic phase of orthotopic liver transplantation using pulse spectrophotometry. Measurements were done in 24 patients. The median PDR after exclusion of two outliers and two patients with inconstant signal was 1.55%/min (95% confidence interval [CI] = 0.8-2.2). No correlation with patient age, gender, body mass, blood loss, administration of fresh frozen plasma, norepinephrine dose, postoperative albumin (serum), or difference in pre and post transplant body weight was detected. In conclusion, we found an ICG-PDR different from zero in the anhepatic phase, an overestimation that may arise in particular from a redistribution into the interstitial space. If ICG pulse spectrophotometry is used to measure functional hepatic reserve, the verified average difference from zero (1.55%/min) determined in our study needs to be taken into accoun

    Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts

    Get PDF
    Introduction Postischemic injury to the coronary vascular endothelium, in particular to the endothelial glycocalyx, may provoke fluid extravasation. Shedding of the glycocalyx is triggered by redox stress encountered during reperfusion and should be alleviated by the radical scavenger nitric oxide (NO). The objective of this study was to investigate the effect of exogenous administration of NO during reperfusion on both coronary endothelial glycocalyx and vascular integrity. Methods Isolated guinea pig hearts were subjected to 15 minutes of warm global ischemia followed by 20 minutes of reperfusion in the absence (Control group) and presence (NO group) of 4 mu M NO. In further experiments, the endothelial glycocalyx was enzymatically degraded by means of heparinase followed by reperfusion without (HEP group) and with NO (HEP+NO group). Results Ischemia and reperfusion severely damaged the endothelial glycocalyx. Shedding of heparan sulfate and damage assessed by electron microscopy were less in the presence of NO. Compared with baseline, coronary fluid extravasation increased after ischemia in the Control, HEP, and HEP+NO groups but remained almost unchanged in the NO group. Tissue edema was significantly attenuated in this group. Coronary vascular resistance rose by 25% to 30% during reperfusion, but not when NO was applied, irrespective of the state of the glycocalyx. Acute postischemic myocardial release of lactate was comparable in the four groups, whereas release of adenine nucleotide catabolites was reduced 42% by NO. The coronary venous level of uric acid, a potent antioxidant and scavenger of peroxynitrite, paradoxically decreased during postischemic infusion of NO. Conclusion The cardioprotective effect of NO in postischemic reperfusion includes prevention of coronary vascular leak and interstitial edema and a tendency to forestall both no-reflow and degradation of the endothelial glycocalyx

    The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation

    Get PDF
    Background: Shear stress induces coronary dilatation via production of nitric oxide ( NO). This should involve the endothelial glycocalyx ( EG). A greater effect was expected of albumin versus hydroxyethyl starch ( HES) perfusion, because albumin seals coronary leaks more effectively than HES in an EG-dependent way. Methods: Isolated hearts ( guinea pigs) were perfused at constant pressure with Krebs-Henseleit buffer augmented with 1/3 volume 5% human albumin or 6% HES ( 200/0.5 or 450/0.7). Coronary flow was also determined after EG digestion ( heparinase) and with nitro-L-arginine ( NO-L-Ag). Results: Coronary flow ( 9.50 +/- 1.09, 5.10 +/- 0.49, 4.87 +/- 1.19 and 4.15 +/- 0.09 ml/ min/ g for `albumin', `HES 200', `HES 450' and `control', respectively, n = 5-6) did not correlate with perfusate viscosity ( 0.83, 1.02, 1.24 and 0.77 cP, respectively). NO-L-Ag and heparinase diminished dilatation by albumin, but not additively. Alone NO-L-Ag suppressed coronary flow during infusion of HES 450. Electron microscopy revealed a coronary EG of 300 nm, reduced to 20 nm after heparinase. Cultured endothelial cells possessed an EG of 20 nm to begin with. Conclusions: Albumin induces greater endothelial shear stress than HES, despite lower viscosity, provided the EG contains negative groups. HES 450 causes some NO-mediated dilatation via even a rudimentary EG. Cultured endothelial cells express only a rudimentary glycocalyx, limiting their usefulness as a model system. Copyright (c) 2007 S. Karger AG, Basel

    Causes of metabolic acidosis in canine hemorrhagic shock: role of unmeasured ions

    Get PDF
    Introduction: Metabolic acidosis during hemorrhagic shock is common and conventionally considered to be due to hyperlactatemia. There is increasing awareness, however, that other nonlactate, unmeasured anions contribute to this type of acidosis. Methods: Eleven anesthetized dogs were hemorrhaged to a mean arterial pressure of 45 mm Hg and were kept at this level until a metabolic oxygen debt of 120 mLO2/kg body weight had evolved. Blood pH, partial pressure of carbon dioxide, and concentrations of sodium, potassium, magnesium, calcium, chloride, lactate, albumin, and phosphate were measured at baseline, in shock, and during 3 hours post-therapy. Strong ion difference and the amount of weak plasma acid were calculated. To detect the presence of unmeasured anions, anion gap and strong ion gap were determined. Capillary electrophoresis was used to identify potential contributors to unmeasured anions. Results: During induction of shock, pH decreased significantly from 7.41 to 7.19. The transient increase in lactate concentration from 1.5 to 5.5 mEq/L during shock was not sufficient to explain the transient increases in anion gap (+11.0 mEq/L) and strong ion gap (+7.1 mEq/L), suggesting that substantial amounts of unmeasured anions must have been generated. Capillary electrophoresis revealed increases in serum concentration of acetate (2.2 mEq/L), citrate (2.2 mEq/L), alpha-ketoglutarate (35.3 microEq/L), fumarate (6.2 microEq/L), sulfate (0.1 mEq/L), and urate (55.9 microEq/L) after shock induction. Conclusion: Large amounts of unmeasured anions were generated after hemorrhage in this highly standardized model of hemorrhagic shock. Capillary electrophoresis suggested that the hitherto unmeasured anions citrate and acetate, but not sulfate, contributed significantly to the changes in strong ion gap associated with induction of shock

    Delayed intracardial shunting and hypoxemia after massive pulmonary embolism in a patient with a biventricular assist device

    Get PDF
    We describe the interdisciplinary management of a 34-year-old woman with dilated cardiomyopathy three months postpartum on a cardiac biventricular assist device (BVAD) as bridge to heart transplantation with delayed onset of intracardial shunting and subsequent hypoxemia due to massive pulmonary embolism. After emergency surgical embolectomy pulmonary function was highly compromised (PaO2/FiO2 54) requiring bifemoral veno-venous extracorporeal membrane oxygenation. Transesophageal echocardiography detected atrial level hypoxemic right-to-left shunting through a patent foramen ovale (PFO). Percutaneous closure of the PFO was achieved with a PFO occluder device. After placing the PFO occluder device oxygenation increased significantly (Δ paO2 119 Torr). The patient received heart transplantation 20 weeks after BVAD implantation and was discharged from ICU 3 weeks after transplantation

    Monitoring und Evaluierung (M+E) als Managementinstrument in der Bewaesserung

    No full text
    Summary in English; Bonn, Univ., Diss., 1995Available from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel A 207709 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Introduction to the Special Issue "Religion, Spirituality, and Faith in a Secular Business World"

    Full text link
    In his book The Protestant Ethic and the Spirit of Capitalism, Weber (1904) identified the Calvinist type of the Protestant ethic as a significant influence in shaping capitalism in Northern Europe. We may observe different transformation processes in geographical areas influenced by other religious traditions, such as Islam, Judaism, Confucianism, and Buddhism. Nevertheless, religion also played a decisive role in forming a modern economic system. In some Western societies, religion is overwhelmingly practised in the private sphere, and religion no longer seems to have any explicit meaning in their enterprises. Nevertheless, religion continues to play a major role in other societies, and even in very secular societies, values, norms, and business convictions are not completely detached from religious beliefs. This is indicated in the modern business world by various developments: the involvement of continental European banks in Islamic banking, the dispute over the publication of religious cartoons in magazines, the debate over the wearing of religious symbols such as the headscarf in the business world, and the integration of religious groups in companies in the context of diversity management discourses

    Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx

    Get PDF
    Acute normovolemic hemodilution (ANH) and volume loading (VL) are standard blood-sparing procedures. However, VL is associated with hypervolemia, which may cause tissue edema, cardiopulmonary complications and a prolonged hospital stay. The body reacts to hypervolemia with release of atrial natriuretic peptide (ANP) from the heart. ANP has been shown to deteriorate the endothelial glycocalyx, a vital part of the vascular permeability barrier. The aim of the present study was to evaluate and compare ANP release and damage to the glycocalyx during ANH and VL
    corecore