2,258 research outputs found

    Charge transport through a SET with a mechanically oscillating island

    Full text link
    We consider a single-electron transistor (SET) whose central island is a nanomechanical oscillator. The gate capacitance of the SET depends on the mechanical displacement, thus, the vibrations of the island vibrations may strongly influence the current-voltage characteristics, current noise, and higher cumulants of the current. Harmonic oscillations of the island and oscillations with random amplitude (e.g., due to the thermal activation) change the transport characteristics in a different way. The noise spectrum has a peak at the frequency of the island oscillations; when the island oscillates harmonically, the peak reduces to a δ\delta-peak. We show that knowledge of the SET transport properties helps to determine in what way the island oscillates, to estimate the amplitude, and the frequency of the oscillations

    Polaronic signatures and spectral properties of graphene antidot lattices

    Full text link
    We explore the consequences of electron-phonon (e-ph) coupling in graphene antidot lattices (graphene nanomeshes), i.e., triangular superlattices of circular holes (antidots) in a graphene sheet. They display a direct band gap whose magnitude can be controlled via the antidot size and density. The relevant coupling mechanism in these semiconducting counterparts of graphene is the modulation of the nearest-neighbor electronic hopping integrals due to lattice distortions (Peierls-type e-ph coupling). We compute the full momentum dependence of the e-ph vertex functions for a number of representative antidot lattices. Based on the latter, we discuss the origins of the previously found large conduction-band quasiparticle spectral weight due to e-ph coupling. In addition, we study the nonzero-momentum quasiparticle properties with the aid of the self-consistent Born approximation, yielding results that can be compared with future angle-resolved photoemission spectroscopy measurements. Our principal finding is a significant e-ph mass enhancement, an indication of polaronic behavior. This can be ascribed to the peculiar momentum dependence of the e-ph interaction in these narrow-band systems, which favors small phonon momentum scattering. We also discuss implications of our study for recently fabricated large-period graphene antidot lattices.Comment: published versio

    Use of dynamical coupling for improved quantum state transfer

    Get PDF
    We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line, by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.Comment: 5 pages, 7 figure

    Quantum state preparation for coupled period tripling oscillators

    Full text link
    We investigate the quantum transition to a correlated state of coupled oscillators in the regime where they display period tripling in response to a drive at triple the eigenfrequency. Correlations are formed between the discrete oscillation phases of individual oscillators. The evolution toward the ordered state is accompanied by the transient breaking of the symmetry between seemingly equivalent configurations. We attribute this to the nontrivial geometric phase that characterizes period tripling. We also show that the Wigner distribution of a single damped quantum oscillator can display a minimum at the classically stable zero-amplitude state.Comment: 7 pages, 9 figure

    Strategy for implementing stabilizer-based codes on solid-state qubits

    Full text link
    We present a method for implementing stabilizer-based codes with encoding schemes of the operator quantum error correction paradigm, e.g., the "standard" five-qubit and CSS codes, on solid-state qubits with Ising or XY-type interactions. Using pulse sequences, we show how to induce the effective dynamics of the stabilizer Hamiltonian, the sum of an appropriate set of stabilizer operators for a given code. Within this approach, the encoded states (ground states of the stabilizer Hamiltonian) can be prepared without measurements and preserved against both the time evolution governed by the original qubit Hamiltonian, and energy-nonconserving errors caused by the environment.Comment: 5 pages, 1 figur

    Energy based method for numerical fatigue analysis of multidirectional carbon fibre reinforced plastics

    No full text
    This paper describes experiments on multiaxial fibre reinforced plastic laminates, which were performed to obtain calibration data for numerical fatigue analyses. For this purpose, fatigue tests of laminates with multidirectional layers subjected to constant amplitude and block loading (0 <= R<1 or R<1) were analysed. The presented simulation results display the fatigue behaviour of carbon fibre reinforced plastics for unidirectional loading conditions and a selected laminate

    Preserving universal resources for one-way quantum computing

    Full text link
    The common spin Hamiltonians such as the Ising, XY, or Heisenberg model do not have ground states that are the graph states needed in measurement-based quantum computation. Various highly-entangled many-body states have been suggested as a universal resource for this type of computation, however, it is not easy to preserve these states in solid-state systems due to their short coherence times. Here we propose a scheme for generating a Hamiltonian that has a cluster state as ground state. Our approach employs a series of pulse sequences inspired by established NMR techniques and holds promise for applications in many areas of quantum information processing.Comment: 5 pages, 2 figure

    Role of interference in quantum state transfer through spin chains

    Full text link
    We examine the role that interference plays in quantum state transfer through several types of finite spin chains, including chains with isotropic Heisenberg interaction between nearest neighbors, chains with reduced coupling constants to the spins at the end of the chain, and chains with anisotropic coupling constants. We evaluate quantitatively both the interference corresponding to the propagation of the entire chain, and the interference in the effective propagation of the first and last spins only, treating the rest of the chain as black box. We show that perfect quantum state transfer is possible without quantum interference, and provide evidence that the spin chains examined realize interference-free quantum state transfer to a good approximation.Comment: 10 figure

    Neutral edge modes in a superconductor -- topological-insulator hybrid structure in a perpendicular magnetic field

    Full text link
    We study the low-energy edge states of a superconductor -- 3D topological-insulator hybrid structure (NS junction) in the presence of a perpendicular magnetic field. The hybridization of electron-like and hole-like Landau levels due to Andreev reflection gives rise to chiral edge states within each Landau level. We show that by changing the chemical potential of the superconductor, this junction can be placed in a regime where the sign of the effective charge of the edge state within the zeroth Landau level changes more than once resulting in neutral edge modes with a finite value of the guiding-center coordinate. We find that the appearance of these neutral edge modes is related to the level repulsion between the zeroth and the first Landau levels in the spectra. We also find that these neutral edge modes come in pairs, one in the zeroth Landau level and its corresponding pair in the first.Comment: 5 page
    • …
    corecore