166 research outputs found

    Lactation biology

    Get PDF

    Mammary cell activity and turnover in dairy cows treated with the prolactin-release inhibitor quinagolide and milked once daily

    Get PDF
    To assess the regulation of mammary cell activity, survival, and proliferation by prolactin (PRL), 5 Holstein cows in early lactation received daily i.m. injections of 1 mg of quinagolide, a suppressor of PRL release, for 9 wk, whereas 4 control cows received the vehicle (water) only. During the last week of treatment, one udder half was milked once a day (1×) and the other twice a day (2×). Mammary biopsies were harvested 1 wk before and 4 and 8 wk after the start of quinagolide treatment. The quinagolide injections reduced milk yield and resulted in lower levels of κ-casein and α-lactalbumin mRNA in the mammary biopsies at wk 4 compared with the control cows. In the mammary tissue of the quinagolide-treated cows at wk 8 of treatment, cell proliferation (as determined by proliferating cell nuclear antigen labeling) was lower and apoptosis (as determined by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) was higher than in the mammary tissue of the control cows. During differential milking, mammary epithelial cells (MEC) were extracted from the milk by centrifugation and purified by immunocytochemical binding to allow variations in the levels of mammary transcripts to be observed. After 9 wk of treatment, levels of α-lactalbumin and κ-casein mRNA were lower in the MEC isolated from milk of the quinagolide-treated cows. This effect was associated with lower PRL receptor mRNA levels and a tendency toward lower viability in the milk-isolated MEC from the 2×-milked glands. The decrease from 2× milking to 1× milking also downregulated α-lactalbumin and κ-casein transcripts in the milk-isolated MEC. Viability was higher for the MEC collected from the 1×-milked udder halves compared with the 2×-milked halves. In conclusion, the reduction in milk yield after chronic administration of the PRL-release inhibitor quinagolide is associated with a reduction in mammary cell activity, survival, and proliferation in lactating dairy cows. Reduced milking frequency was also associated with a decrease in MEC activity

    Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation

    Full text link
    Excessive dietary intake of fats and sugars ("Western diet", WD) is one of the leading causes of obesity. The consumption of the microalga Arthrospira platensis (spirulina, Sp) is increasing due to its presumed health benefits. Both WD and Sp are also consumed by pregnant and breastfeeding women. This study investigated if gestating and lactating domestic pigs are an appropriate model for WD-induced metabolic disturbances similar to those observed in humans and if Sp supplementation may attenuate any of these adverse effects. Pigs were fed a WD high in fat, sugars, and cholesterol or a control diet. Half of the animals per diet group were supplemented with 20 g Sp per day. The WD did not increase body weight or adipose tissue accumulation but led to metabolic impairments such as higher cholesterol concentration in plasma, lower IGF1 plasma levels, and signs of hepatic damage compared to the control group. Spirulina supplementation could not reduce all the metabolic impairments observed in WD-fed animals. These findings indicate limited suitability of gestating and lactating domestic pigs as a model for WD but a certain potential of low-dose Sp supplementation to partially attenuate negative WD effects

    Rumen-protected choline supplementation in periparturient dairy goats: effects on liver and mammary gland

    Get PDF
    The current study investigated the effects of supplementing rumen-protected choline (RPC) on metabolic profile, selected liver constituents and transcript levels of selected enzymes, transcription factors and nuclear receptors involved in mammary lipid metabolism in dairy goats. Eight healthy lactating goats were studied: four received no choline supplementation (CTR group) and four received 4 g RPC chloride/day (RPC group). The treatment was administered individually starting 4 weeks before expected kidding and continuing for 4 weeks after parturition. In the first month of lactation, milk yield and composition were measured weekly. On days 7, 14, 21 and 27 of lactation, blood samples were collected and analysed for glucose, β-hydroxybutyrate, non-esterified fatty acids and cholesterol. On day 28 of lactation, samples of liver and mammary gland tissue were obtained. Liver tissue was analysed for total lipid and DNA content; mammary tissue was analysed for transcripts of lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory binding proteins 1 and 2, peroxisome proliferator-activated receptor γ and liver X receptor α. Milk yield was very similar in the two groups, but RPC goats had lower (P<0·05) plasma β-hydroxybutyrate. The total lipid content of liver was unaffected (P=0·890), but the total lipid/DNA ratio was lower (both P<0·05) in RPC than CTR animals. Choline had no effect on the expression of the mammary gland transcripts involved in lipid metabolism. The current plasma and liver data indicate that choline has a positive effect on liver lipid metabolism, whereas it appears to have little effect on transcript levels in mammary gland of various proteins involved in lipid metabolism. Nevertheless, the current results were obtained from a limited number of animals, and choline requirement and function in lactating dairy ruminants deserve further investigatio

    The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype

    Full text link
    Staphylococcus aureus is a major mastitis-causing pathogen in dairy cows. The latex agglutination-based Staphaurex test allows bovine S. aureus strains to be grouped into Staphaurex latex agglutination test (SLAT)-negative [SLAT(2)] and SLATpositive [SLAT(+)] isolates. Virulence and resistance gene profiles within SLAT(2) isolates are highly similar, but differ largely from those of SLAT(+) isolates. Notably, specific genetic changes in important virulence factors were detected in SLAT(2) isolates. Based on the molecular data, it is assumed that SLAT(+) strains are more virulent than SLAT(2) strains. The objective of this study was to investigate if SLAT(2) and SLAT(+) strains can differentially induce an immune response with regard to their adhesive capacity to epithelial cells in the mammary gland and in turn, could play a role in the course of mastitis. Primary bovine mammary epithelial cells (bMEC) were challenged with suspensions of heat inactivated SLAT(+) (n = 3) and SLAT(2) (n = 3) strains isolated from clinical bovine mastitis cases. After 1, 6, and 24 h, cells were harvested and mRNA expression of inflammatory mediators (TNF-a, IL-1b, IL-8, RANTES, SAA, lactoferrin, GM-CSF, COX-2, and TLR-2) was evaluated by reverse transcription and quantitative PCR. Transcription (DDCT) of most measured factors was induced in challenged bMEC for 6 and 24 h. Interestingly, relative mRNA levels were higher (P,0.05) in response to SLAT(+) compared to SLAT(2) strains. In addition, adhesion assays on bMEC also showed significant differences between SLAT(+) and SLAT(2) strains. The present study clearly shows that these two S. aureus strain types cause a differential immune response of bMEC and exhibit differences in their adhesion capacity in vitro. This could reflect differences in the severity of mastitis that the different strain types may induce

    Acute phase reaction to LPS induced mastitis in early lactation dairy cows fed nitrogenic, glucogenic or lipogenic diets.

    Get PDF
    The availability of certain macronutrients is likely to influence the capacity of the immune system. Therefore, we investigated the acute phase response to intramammary (i.mam.) LPS in dairy cows fed either a nitrogenic diet (n = 10) high in crude protein, a glucogenic diet (n = 11) high in carbohydrates and glucogenic precursors, or a lipogenic diet (n = 11) high in lipids. Thirty-two dairy cows were fed one of the dietary concentrates directly after calving until the end of trial at 27 ± 3 DIM (mean ± SD). In wk 3 of lactation, 20 µg of LPS was i.mam. injected in one quarter, and sterile NaCl (0.9%) in the contralateral quarter. Milk samples of the LPS challenged and control quarter were taken hourly from before (0 h) until 9 h after LPS challenge, and analyzed for milk amyloid A (MAA), haptoglobin (Hp), and IL-8. In addition, blood samples were taken in the morning, and composite milk samples at morning and evening milkings from 1 d before until 3 d after LPS challenge, and again on d 9 to determine serum amyloid A (SAA) and Hp in blood, and MAA and Hp in milk. The mRNA abundance of various immunological and metabolic factors in blood leukocytes was quantified by RT-qPCR from samples taken at -18 h, -1 h, 6 h, 9 h and 23 h relative to LPS application. The dietary concentrates did not affect any of the parameters in blood, milk, and leukocytes. The IL-8 was increased from 2 h, Hp from 2 to 3 h, and MAA from 6 h relative to the LPS administration in the milk of the challenged quarter and remained elevated until 9 h. The MAA and Hp were also increased at 9 h after LPS challenge in whole udder composite milk, whereas Hp and SAA in blood were increased only after 23 h. All 4 parameters were decreased again on d 9. Similar for all groups, the mRNA abundance of Hp and the heat shock protein family A (HSP70) increased after the LPS challenge, while the mRNA expression of the tumor necrosis factor α (TNF) and the leukocyte integrin β 2 subunit (CD18) were decreased at 6 h after LPS challenge. The glucose transporter (GLUT)1 mRNA abundance decreased after LPS, whereas that of the GLUT3 increased, and that of the GLUT4 was not detectable. The mRNA abundance of GAPDH was increased at 9 h after LPS and remained elevated. The APP response was detected earlier in milk compared with blood indicating mammary production. However, immunological responses to LPS were not affected by the availability of specific macronutrients provided by the different diets

    Effect of different dietary regimens at dry-off on performance, metabolism, and immune system in dairy cows.

    Get PDF
    Concentrate withdrawal and feed restriction are commonly used to reduce milk production and to facilitate dry-off, but may impair immune function in dairy cows. We investigated the effect of feed rations providing different amounts of nutrients in combination with feed restriction on performance, endocrine, and metabolic responses, as well as on leukocyte function before and after abrupt dry-off. Forty-three cows were studied from d 12 before until d 6 after dry-off (56 d before scheduled calving). Cows were fed experimental concentrates rich in crude protein (nitrogenic, n = 14), glucogenic precursors (glucogenic, n = 14), or lipids (lipogenic, n = 15). On d 3 before dry-off, total feed allowance was restricted to 50% in half of the animals of each dietary group, whereas feed allowance remained unchanged in the other animals. Performance parameters (milk yield, milk composition, and dry matter intake) were recorded, and daily blood and milk samples were taken and analyzed for various metabolic and endocrine parameters. Additionally, activity and mRNA abundance of several genes in leukocytes were measured at selected time points before and after feed restriction and dry-off, respectively. Feed restriction immediately resulted in a negative energy balance and decreased milk production. Concomitantly, concentrations of nonesterified fatty acids increased, whereas insulin, insulin-like growth factor-1, and glucagon decreased. After dry-off, energy balance turned positive and plasma nonesterified fatty acids decreased. Plasma glucose, insulin, and insulin-like growth factor-1 concentrations increased in all groups after dry-off. Glucose, insulin, and glucagon concentrations in plasma were higher in nonrestricted compared with restricted animals after dry-off. The experimental concentrate types marginally affected the investigated metabolic and endocrine factors, with the exception of elevated milk and plasma urea concentrations in cows fed the nitrogenic concentrate. Chemotactic and phagocytic activity of leukocytes were not affected by diets, feed restriction, or dry-off. Likewise, blood leukocyte mRNA abundance encoding for tumor necrosis factor α (TNF), heat shock protein family A (HSP70), and the glucose transporters (GLUT) 1 and 3 remained unchanged throughout the study period. Overall, the short-term negative energy balance induced by feed restriction was temporarily accompanied by metabolic adaptations, but did not alter the studied factors related to the immune system. Metabolic and endocrine adaptations supporting milk synthesis were continued during the first days after dry-off despite cessation of milking. Thus, the abrupt dry-off resulted in a short-term increase of glucose and triglyceride concentrations, with a delayed endocrine response to re-establish nutrient homeostasis in blood
    corecore