9 research outputs found

    Cellular Plasticity of CD4+ T Cells in the Intestine

    Get PDF
    Barrier sites such as the gastrointestinal tract are in constant contact with the environment which contains both beneficial and harmful components. The immune system at the epithelia must make the distinction between these components to balance tolerance, protection and immunopathology. This is achieved via multifaceted immune recognition, highly organised lymphoid structures and the interaction of many types of immune cells. The adaptive immune response in the gut is orchestrated by CD4+ helper T (Th) cells which are integral to gut immunity. In recent years it has become apparent that the functional identity of these Th cells is not as fixed as initially thought. Plasticity in differentiated T cell subsets has now been firmly established, in both health and disease. The gut, in particular, utilises CD4+ T cell plasticity to mould CD4+ T cell phenotypes to maintain its finely poised balance of tolerance and inflammation and to encourage biodiversity within the enteric microbiome. In this review we will discuss intestinal helper T cell plasticity and our current understanding of its mechanisms, including our growing knowledge of an evolutionarily ancient symbiosis between microbiota and malleable CD4+ T cell effectors

    Tbet or Continued RORγt Expression Is Not Required for Th17-Associated Immunopathology

    Get PDF
    The discovery of Th17 cell plasticity, in which CD4 + IL-17-producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ+ ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17ACre- or Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-g double-producing cells, but leads to a marked absence of Th1-like IFNγ+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-Triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17-producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre-mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ+ ex-Th17 cells. However, IL-17ACre-mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17ACre-mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity

    Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients

    No full text
    FOXP3-expressing naturally occurring CD4(+)CD25(high) T regulatory cells (Treg) are relevant in the control of autoimmunity, and a defect in this cell population has been observed in several human autoimmune diseases. We hypothesized that altered functions of peripheral Treg cells might play a role in the immunopathogenesis of myasthenia gravis, a T cell-dependent autoimmune disease characterized by the presence of pathogenic autoantibodies specific for the nicotinic acetylcholine receptor. We report in this study a significant decrease in the in vitro suppressive function of peripheral Treg cells isolated from myasthenia patients in comparison to those from healthy donors. Interestingly, Treg cells from prednisolone-treated myasthenia gravis patients showed an improved suppressive function compared with untreated patients, suggesting that prednisolone may play a role in the control of the peripheral regulatory network. Indeed, prednisolone treatment prevents LPS-induced maturation of monocyte-derived dendritic cells by hampering the up-regulation of costimulatory molecules and by limiting secretion of IL-12 and IL-23, and enhancing IL-10. In addition, CD4(+) T cells cultured in the presence of such tolerogenic dendritic cells are hyporesponsive and can suppress autologous CD4(+) T cell proliferation. The results shown in this study indicate that prednisolone treatment promotes an environment that favors immune regulation rather than inflammation

    Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells.

    Get PDF
    RAR-related orphan receptor γt (ROR-γt) directs differentiation of pro-inflammatory T helper 17 (T(H)17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases(1–3). However, ROR-γt-dependent group 3 innate lymphoid cells (ILC3s) provide essential immunity and tissue protection in the intestine(4–11), suggesting that targeting ROR-γt could also result in impaired host defense to infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from T(H)17 cells but not ILC3s in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Transient genetic deletion of ROR-γt in mature ILC3s also did not impair cytokine responses in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation, and reduced the frequencies of T(H)17 cells but not ILC3s isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of T(H)17 cell versus ILC3 responses, and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation
    corecore