133 research outputs found

    08441 Abstracts Collection -- Emerging Uses and Paradigms for Dynamic Binary Translation

    Get PDF
    From 26.10. to 31.10.2008, the Dagstuhl Seminar 08441 ``Emerging Uses and Paradigms for Dynamic Binary Translation \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Performance Modeling of Multithreaded Programs for Mobile Asymmetric Chip Multiprocessors

    Full text link
    Abstract—Asymmetric chip multiprocessors (ACMPs) have multiple core types that are instruction-set compatible but op-timized differently to trade performance and power in mobile devices. The challenge for ACMPs is to map the program to the best core type and thread count to achieve performance require-ments under power constraints. This paper describes an empirical strategy, MONARCH, to automatically build estimation models that capture how a multithreaded program’s performance scales with thread count and core type. We show that MONARCH’s models are accurate and useful to find mappings that achieve performance goals while minimizing power. I

    QUEnch assiSTed (QUEST) MRI Used as a Novel Approach to Identify Reactive Oxygen Species as a Result of Experimental TBI

    Get PDF
    Introduction: Traumatic brain injury (TBI) generates reactive oxygen species (ROS), promoting inflammatory processes and impeding TBI recovery. Within the VA population, over 70% of military personnel that sustain a TBI receive opioid-based pain relief, however, opiates may actually exacerbate post-TBI complications through its documented recruitment of oxidative and inflammatory systems. Thus, we hypothesize that TBI and opioid treatment act synergistically to worsen post-TBI oxidative stress. Methods: Mice were exposed to either TBI or sham injury and administered morphine or saline in the acute post-injury period. Afterwards, neuroimaging was conducted using a novel technique, QUEnch assiSTed (QUEST) MRI, which compares standard MRI signals across mice that acutely receive an antioxidant “quench” therapy and those receiving saline as control. Therefore, differential MRI signals between these groups are an index of ROS generation. Changes in hippocampus and cortex signals were measured, as these structures are most commonly affected by TBI. Methylene blue and α-lipoic acid were used as antioxidants in the quenching step as they halt mitochondrial ROS production and scavenge excess ROS, respectively. Results: No significant changes in ROS levels were detected as a result of TBI, opioid exposure or their combination using QUEST MRI in either the cortex or hippocampus. Conclusions and Future Directions: While QUEST imaging did not yield significant changes between experimental groups, future work will include ex-vivo biochemical ROS analyses from harvested tissues, which will provide higher resolution quantification of oxidative processes than that of QUEST MRI

    Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which the loss of dystrophin causes progressive degeneration of skeletal and cardiac muscle. Potential therapies that carry substantial risk, such as gene and cell-based approaches, must first be tested in animal models, notably the mdx mouse and several dystrophin-deficient breeds of dogs, including golden retriever muscular dystrophy (GRMD). Affected dogs have a more severe phenotype, in keeping with that of DMD, so may better predict disease pathogenesis and treatment efficacy. We and others have developed various phenotypic tests to characterize disease progression in the GRMD model. These biomarkers range from measures of strength and joint contractures to magnetic resonance imaging. Some of these tests are routinely used in clinical veterinary practice, while others require specialized equipment and expertise. By comparing serial measurements from treated and untreated groups, one can document improvement or delayed progression of disease. Potential treatments for DMD may be broadly categorized as molecular, cellular, or pharmacologic. The GRMD model has increasingly been used to assess efficacy of a range of these therapies. While some of these studies have largely provided general proof-of-concept for the treatment under study, others have demonstrated efficacy using the biomarkers discussed. Importantly, just as symptoms in DMD vary among patients, GRMD dogs display remarkable phenotypic variation. While confounding statistical analysis in preclinical trials, this variation offers insight regarding the role that modifier genes play in disease pathogenesis. By correlating functional and mRNA profiling results, gene targets for therapy development can be identified

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)
    corecore