3 research outputs found

    Penerapan Model Pembelajaran Atraktif Berbasis Multiple Intelligences Tentang Pemantulan Cahaya pada Cermin

    Get PDF
    Penelitian ini bertujuan untuk mengetahui efektivitas penerapan model pembelajaran atraktif berbasis multiple intelligences dalam meremediasi miskonsepsi siswa tentang pemantulan cahaya pada cermin. Pada penelitian ini digunakan bentuk pre-eksperimental design dengan rancangan one group pretest-post test design. Alat pengumpulan data berupa tes pilihan ganda dengan reasoning. Hasil validitas sebesar 4,08 dan reliabilitas 0,537. Siswa dibagi menjadi lima kelompok kecerdasan, yaitu kelompok linguistic intelligence, mathematical-logical intelligence, visual-spatial intelligence, bodily-khinestetic intelligence, dan musical intelligence. Siswa membahas konsep fisika sesuai kelompok kecerdasannya dalam bentuk pembuatan pantun-puisi, teka-teki silang, menggambar kreatif, drama, dan mengarang lirik lagu. Efektivitas penerapan model pembelajaran multiple intelligences menggunakan persamaan effect size. Ditemukan bahwa skor effect size masing-masing kelompok berkategori tinggi sebesar 5,76; 3,76; 4,60; 1,70; dan 1,34. Penerapan model pembelajaran atraktif berbasis multiple intelligences efektif dalam meremediasi miskonsepsi siswa. Penelitian ini diharapkan dapat digunakan pada materi fisika dan sekolah lainnya

    Metal–Metal Interactions in <i>C</i><sub><i>3</i></sub>‑Symmetric Diiron Imido Complexes Linked by Phosphinoamide Ligands

    No full text
    The tris­(phosphinoamide)-bridged Fe<sup>II</sup>Fe<sup>II</sup> di­iron complex Fe­(μ-<sup><i>i</i></sup>PrNPPh<sub>2</sub>)<sub>3</sub>Fe­(η<sup>2</sup>-<sup><i>i</i></sup>PrNPPh<sub>2</sub>) (<b>1</b>) can be reduced in the absence or presence of PMe<sub>3</sub> to generate the mixed-valence Fe<sup>II</sup>Fe<sup>I</sup> complexes Fe­(μ-<sup><i>i</i></sup>PrNPPh<sub>2</sub>)<sub>3</sub>Fe­(PPh<sub>2</sub>NH<sup><i>i</i></sup>Pr) (<b>2</b>) or Fe­(μ-<sup><i>i</i></sup>PrNPPh<sub>2</sub>)<sub>3</sub>Fe­(PMe<sub>3</sub>) (<b>3</b>), respectively. Following a typical oxidative group transfer procedure, treatment of <b>2</b> or <b>3</b> with organic azides generates the mixed-valent Fe<sup>II</sup>Fe<sup>III</sup> imido complexes Fe­(<sup><i>i</i></sup>PrNPPh<sub>2</sub>)<sub>3</sub>FeNR (R = <sup><i>t</i></sup>Bu (<b>4</b>), Ad (<b>5</b>), 2,4,6-trimethylphenyl (<b>6</b>)). These complexes represent the first examples of first-row bimetallic complexes featuring both metal–ligand multiple bonds and metal–metal bonds. The reduced complexes <b>2</b> and <b>3</b> and imido complexes <b>4</b>–<b>6</b> have been characterized via X-ray crystallography, Mössbauer spectroscopy, cyclic voltammetry, and SQUID magnetometry, and a theoretical description of the bonding within these diiron complexes has been obtained using computational methods. The effect of the metal–metal interaction on the electronic structure and bonding in diiron imido complexes <b>4</b>–<b>6</b> is discussed in the context of similar monometallic iron imido complexes

    One-Electron Oxidation Chemistry and Subsequent Reactivity of Diiron Imido Complexes

    No full text
    The chemical oxidation and subsequent group transfer activity of the unusual diiron imido complexes Fe­(<sup><i>i</i></sup>PrNP­Ph<sub>2</sub>)<sub>3</sub>FeNR (R = <i>tert</i>-butyl (<sup><i>t</i></sup>Bu), <b>1</b>; adamantyl, <b>2</b>) was examined. Bulk chemical oxidation of <b>1</b> and <b>2</b> with Fc­[PF<sub>6</sub>] (Fc = ferrocene) is accompanied by fluoride ion abstraction from PF<sub>6</sub><sup>–</sup> by the iron center <i>trans</i> to the FeNR functionality, forming F–Fe­(<sup><i>i</i></sup>PrNP­Ph<sub>2</sub>)<sub>3</sub>FeNR (<sup><i>i</i></sup>Pr = isopropyl) (R = <sup><i>t</i></sup>Bu, <b>3</b>; adamantyl, <b>4</b>). Axial halide ligation in <b>3</b> and <b>4</b> significantly disrupts the Fe–Fe interaction in these complexes, as is evident by the >0.3 Å increase in the intermetallic distance in <b>3</b> and <b>4</b> compared to <b>1</b> and <b>2</b>. Mössbauer spectroscopy suggests that each of the two pseudotetrahedral iron centers in <b>3</b> and <b>4</b> is best described as Fe<sup>III</sup> and that one-electron oxidation has occurred at the tris­(amido)-ligated iron center. The absence of electron delocalization across the Fe–FeNR chain in <b>3</b> and <b>4</b> allows these complexes to readily react with CO and <sup><i>t</i></sup>BuNC to generate the Fe<sup>III</sup>Fe<sup>I</sup> complexes F–Fe­(<sup><i>i</i></sup>PrNP­Ph<sub>2</sub>)<sub>3</sub>Fe­(CO)<sub>2</sub> (<b>5</b>) and F–Fe­(<sup><i>i</i></sup>PrNPPh<sub>2</sub>)<sub>3</sub>­Fe­(<sup><i>t</i></sup>BuNC)<sub>2</sub> (<b>6</b>), respectively. Computational methods are utilized to better understand the electronic structure and reactivity of oxidized complexes <b>3</b> and <b>4</b>
    corecore