1,197 research outputs found

    Perceived orientation, spatial layout and the geometry of pictures

    Get PDF
    The purpose is to discuss the role of geometry in determining the perception of spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives from Cutting's (1988) suggestion, based on his analysis of some of the author's data (Goldstein, 1987), that the changes in perceived orientation that occur when pictures are viewed at an angle can be explained in terms of geometrically produced changes in the picture's virtual space

    Results at 24 months from the prospective, randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior cervical discectomy and fusion with 4-year follow-up and continued access patients.

    Get PDF
    BackgroundCervical total disk replacement (TDR) is intended to address pain and preserve motion between vertebral bodies in patients with symptomatic cervical disk disease. Two-year follow-up for the ProDisc-C (Synthes USA Products, LLC, West Chester, Pennsylvania) TDR clinical trial showed non-inferiority versus anterior cervical discectomy and fusion (ACDF), showing superiority in many clinical outcomes. We present the 4-year interim follow-up results.MethodsPatients were randomized (1:1) to ProDisc-C (PDC-R) or ACDF. Patients were assessed preoperatively, and postoperatively at 6 weeks and 3, 6, 12, 18, 24, 36, and 48 months. After the randomized portion, continued access (CA) patients also underwent ProDisc-C implantation, with follow-up visits up to 24 months. Evaluations included Neck Disability Index (NDI), Visual Analog Scale (VAS) for pain/satisfaction, and radiographic and physical/neurologic examinations.ResultsRandomized patients (103 PDC-R and 106 ACDF) and 136 CA patients were treated at 13 sites. VAS pain and NDI score improvements from baseline were significant for all patients (P < .0001) but did not differ among groups. VAS satisfaction was higher at all time points for PDC-R versus ACDF patients (P = .0499 at 48 months). The percentage of patients who responded yes to surgery again was 85.6% at 24 months and 88.9% at 48 months in the PDC-R group, 80.9% at 24 months and 81.0% at 48 months in the ACDF group, and 86.3% at 24 months in the CA group. Five PDC-R patients (48 months) and no CA patients (24 months) had index-level bridging bone. By 48 months, approximately 4-fold more ACDF patients required secondary surgery (3 of 103 PDC-R patients [2.9%] vs 12 of 106 ACDF patients [11.3%], P = .0292). Of these, 6 ACDF patients (5.6%) required procedures at adjacent levels. Three CA patients required secondary procedures (24 months).ConclusionsOur 4-year data support that ProDisc-C TDR and ACDF are viable surgical options for symptomatic cervical disk disease. Although ACDF patients may be at higher risk for additional surgical intervention, patients in both groups show good clinical results at longer-term follow-up

    Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila

    Get PDF
    KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase. in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport

    Solar Polar Sail mission: report of a study to put a scientific spacecraft in a circular polar orbit about the sun

    Get PDF
    The Solar Polar Sail Mission uses solar-sail propulsion to place a spacecraft in a circular orbit 0.48 Au from the Sun with an inclination of 90 degrees. The spacecraft's orbit around the Sun is in 3:1 resonance with Earth phased such that the Earth-Sun-spacecraft angle range from 30 degrees to 150 degrees. The polar view will further our understanding of: (1) the global structure and evolution of the corona, (2) the initiation, evolution, and propagation of coronal mass ejections; (3) the acceleration of the solar wind; (4) the interactions of rotation, magnetic fields, and convection within the Sun; (5) the acceleration and propagation of energetic particles; and (6) the rate of angular momentum loss by the Sun. Candidate imaging instruments are a coronagraph, an all-sky imager for following mass ejections and interaction regions from the Sun to 1 AU, and a disk imager. A lightweight package of fields and particle instruments is included. A mission using a 158 m square sail with an effective areal density of 6 g/m^2 would cost approximately $250-300M (FY97) for all mission phases, including the launch vehicle. This mission depends on the successful development and demonstration of solar-sail propulsion

    Solar Polar Sail mission: report of a study to put a scientific spacecraft in a circular polar orbit about the sun

    Get PDF
    The Solar Polar Sail Mission uses solar-sail propulsion to place a spacecraft in a circular orbit 0.48 Au from the Sun with an inclination of 90 degrees. The spacecraft's orbit around the Sun is in 3:1 resonance with Earth phased such that the Earth-Sun-spacecraft angle range from 30 degrees to 150 degrees. The polar view will further our understanding of: (1) the global structure and evolution of the corona, (2) the initiation, evolution, and propagation of coronal mass ejections; (3) the acceleration of the solar wind; (4) the interactions of rotation, magnetic fields, and convection within the Sun; (5) the acceleration and propagation of energetic particles; and (6) the rate of angular momentum loss by the Sun. Candidate imaging instruments are a coronagraph, an all-sky imager for following mass ejections and interaction regions from the Sun to 1 AU, and a disk imager. A lightweight package of fields and particle instruments is included. A mission using a 158 m square sail with an effective areal density of 6 g/m^2 would cost approximately $250-300M (FY97) for all mission phases, including the launch vehicle. This mission depends on the successful development and demonstration of solar-sail propulsion

    MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma

    Get PDF
    Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtypespecific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d≥3d \ge 3, these pathologies occur in a full neighborhood {β>β0, ∣h∣<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d≥2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d≥4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    • …
    corecore