19,370 research outputs found
Pollution reduction technology program for small jet aircraft engines: Class T1
Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated
INTERREGIONAL EFFECTS OF REDUCED TIMBER HARVESTS: THE IMPACT OF THE NORTHERN SPOTTED OWL LISTING IN RURAL AND URBAN OREGON
A core-periphery, multiregional, input-output model of western Oregon is used to estimate impacts of periphery timber harvest reductions resulting from listing of an endangered species. Under the most probable scenario, 31,620 total jobs would be lost in the two regions. Fourteen percent of this impact is absorbed in the core (Metro) region. Forty percent of periphery and 80% of Metro jobs lost are from service sectors, a result of important core-periphery trade in central place services. Explicit inclusion of unemployment benefits for displaced workers reduces employment loss estimates by 12% to 14%.Resource /Energy Economics and Policy,
THE ROLE OF AGRICULTURE IN OREGON'S ECONOMIC BASE: FINDINGS FROM A SOCIAL ACCOUNTING MATRIX
Most studies of a state’'s economic base count as “"basic”" only the “"traditional"” exports of goods, federal spending, and business investment. “"Nontraditional”" elements of the economic base (including exports of services, federal transfers to state/local governments and households, and extraregional property income) are typically ignored. We construct a social accounting matrix (SAM) for Oregon and estimate Oregon’'s economic base accounting for both traditional and nontraditional elements. Almost 20% of Oregon’'s jobs depend on extraregional income to households (including government transfers and outside property income), 11% depend on lumber and wood and paper products, and 8% depend on agriculture.Agribusiness,
Hysteresis, Avalanches, and Noise: Numerical Methods
In studying the avalanches and noise in a model of hysteresis loops we have
developed two relatively straightforward algorithms which have allowed us to
study large systems efficiently. Our model is the random-field Ising model at
zero temperature, with deterministic albeit random dynamics. The first
algorithm, implemented using sorted lists, scales in computer time as O(N log
N), and asymptotically uses N (sizeof(double)+ sizeof(int)) bits of memory. The
second algorithm, which never generates the random fields, scales in time as
O(N \log N) and asymptotically needs storage of only one bit per spin, about 96
times less memory than the first algorithm. We present results for system sizes
of up to a billion spins, which can be run on a workstation with 128MB of RAM
in a few hours. We also show that important physical questions were resolved
only with the largest of these simulations
Inversion improves the recognition of facial expression in thatcherized images
The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressions. In contrast, local inversion of facial features in upright thatcherized faces resulted in a much larger reduction in the recognition of facial expressions. Paradoxically, inversion of thatcherized faces caused a relative increase in the recognition of facial expressions. Together, these results suggest that different processes explain the effects of inversion on the recognition of facial expressions and on the perception of the Thatcher illusion. The grotesque perception of thatcherized images is based on a more orientation-sensitive representation of the face. In contrast, the recognition of facial expression is dependent on a more orientation-insensitive representation. A similar pattern of results was evident when only the mouth or eye region was visible. These findings demonstrate that a key component of the Thatcher illusion is to be found in orientation-specific encoding of the features of the face
ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3
A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested
Pollution reduction technology program small jet aircraft engines, phase 3
A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals
Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2
A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine
Real estate financing alternatives in a high risk economy
Thesis (M.S.)--Massachusetts Institute of Technology, Sloan School of Management, 1988.Bibliography: leaves 99-100.by Bruce W.C. Ellis and Andrew Weiss.M.S
Pollution reduction technology program for small jet aircraft engines, phase 1
A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine
- …