22 research outputs found
S100B Increases Proliferation in PC12 Neuronal Cells and Reduces Their Responsiveness to Nerve Growth Factor via Akt Activation
S100B is a Ca2+-modulated protein of the EF-hand type expressed in high abundance in a restricted set of cell types including certain neuronal populations. S100B has been suggested to participate in cell cycle progression, and S100B levels are high in tumor cells, compared with normal parental cells. We expressed S100B in the neuronal cell line PC12, which normally does not express the protein, by the Tet-Off technique, and found the following: (i) proliferation was higher in S100B+ PC12 cells than in S100B- PC12 cells; (ii) nerve growth factor (NGF), which decreased the proliferation of S100B- PC12 cells, was less effective in the case of S100B+ PC12 cells; (iii) expression of S100B made PC12 cells resistant to the differentiating effect of NGF; and (iv) interruption of S100B expression did not result in an immediate restoration of PC12 cell sensitivity to the differentiating effect of NGF. Expression of S100B in PC12 cells resulted in activation of Akt; increased levels of p21WAF1, an inhibitor of cyclin-dependent kinase (cdk) 2 and a positive regulator of cdk4; increased p21WAF1-cyclin D1 complex formation; and increased phosphorylation of the retinoblastoma suppressor protein, Rb. These S100B-induced effects, as well as the reduced ability of S100B+ PC12 cells to respond to NGF, were dependent on Akt activation because they were remarkably reduced or abrogated in the presence of LY294002, an inhibitor of the Akt upstream kinase phosphatidylinositol 3-kinase. Thus, S100B might promote cell proliferation and interfere with NGF-induced PC12 cell differentiation by stimulating a p21WAF1/cyclin D1/cdk4/Rb/E2F pathway in an Akt-mediated manner
S100B's double life: Intracellular regulator and extracellular signal
AbstractThe Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein
Open and remotely accessible Neuroplatform for research in wetware computing
Wetware computing and organoid intelligence is an emerging research field at the intersection of electrophysiology and artificial intelligence. The core concept involves using living neurons to perform computations, similar to how Artificial Neural Networks (ANNs) are used today. However, unlike ANNs, where updating digital tensors (weights) can instantly modify network responses, entirely new methods must be developed for neural networks using biological neurons. Discovering these methods is challenging and requires a system capable of conducting numerous experiments, ideally accessible to researchers worldwide. For this reason, we developed a hardware and software system that allows for electrophysiological experiments on an unmatched scale. The Neuroplatform enables researchers to run experiments on neural organoids with a lifetime of even more than 100 days. To do so, we streamlined the experimental process to quickly produce new organoids, monitor action potentials 24/7, and provide electrical stimulations. We also designed a microfluidic system that allows for fully automated medium flow and change, thus reducing the disruptions by physical interventions in the incubator and ensuring stable environmental conditions. Over the past three years, the Neuroplatform was utilized with over 1,000 brain organoids, enabling the collection of more than 18 terabytes of data. A dedicated Application Programming Interface (API) has been developed to conduct remote research directly via our Python library or using interactive compute such as Jupyter Notebooks. In addition to electrophysiological operations, our API also controls pumps, digital cameras and UV lights for molecule uncaging. This allows for the execution of complex 24/7 experiments, including closed-loop strategies and processing using the latest deep learning or reinforcement learning libraries. Furthermore, the infrastructure supports entirely remote use. Currently in 2024, the system is freely available for research purposes, and numerous research groups have begun using it for their experiments. This article outlines the system’s architecture and provides specific examples of experiments and results
Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition
FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESType 1 diabetes is caused by an autoimmune assault that induces progressive beta-cell dysfunction and dead. Pro-inflammatory cytokines, such as interleukin 1 beta (IL1B), tumor necrosis factor (TNF) and interferon gamma (IFNG) contribute for beta-cell dea6112536FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESsem informaçãosem informaçãosem informaçãoThe authors thank the personnel from the Laboratory of Endocrine Pancreas and Metabolism (UNICAMP) and ULB Center for Diabetes Research: W O Floriano, J P Agulhari, N Pachera, A Musuaya, M Pangerl, S Mertens and I Millard for excellent technical suppor
Ubiquitin D regulates IRE1 α/c-Jun N-terminal kinase (JNK) protein-dependent apoptosis in pancreatic beta cells
Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1 alpha is critical for this transition. IRE1 alpha activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1 alpha-interacting protein ubiquitin D (UBD) on the regulation of IRE1 alpha and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1 alpha interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown ofUBDin human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1 alpha activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1 beta and interferon (IFN)-gamma in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1 alpha in human and rodent beta cells, modulating IRE1 alpha-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1 alpha/JNK pro-apoptotic pathway in cytokine-exposed beta cells
The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one
The Ca2+-binding protein of the EF­hand type, S100B, is an intracellular regulator and an extracellular signal. Within cells S100B interacts with several proteins thereby regulating energy metabolism, Ca2+ homeostasis, protein phosphorylation and degradation, and cell locomotion, proliferation and differentiation. Once secreted/released, S100B exerts autocrine and paracrine effects on responsive cells by engaging the receptor for advanced glycation end products. However, recent evidence suggests that S100B might also activate basic fibroblast growth factor receptor 1 via prior binding to basic fibroblast growth factor
Role of microRNA in pancreatic beta cell function
MicroRNA (miRNAs) are small non-coding RNA involved in gene expression regulation. Emerging evidences identify miRNAs as key regulators of beta cell physiology. Their role in fine-tuned gene expression regulation is crucial in the differentiation of insulin-producing cells and contributes to the acquisition and management of their unique phenotype. Dysregulation of miRNA expression causes beta cell dysfunction and promotes the development of different forms of diabetes mellitus
ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes
Abstract: Components of the unfolded protein response (UPR) modulate beta cell inflammation and death in early type 1 diabetes (T1D). The UPR is a mechanism by which cells react to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). It aims to restore cellular homeostasis, but in case of chronic or overwhelming ER stress the persistent activation of the UPR triggers apoptosis, contributing to the loss of beta cells in both T1D and type 2 diabetes. It remains to be determined how and why the transition from ‘physiological’ to ‘pathological’ UPR takes place. A key component of the UPR is the ER transmembrane protein IRE1α (inositol-requiring enzyme 1α). IRE1α activity is modulated by both intra-ER signals and by the formation of protein complexes at its cytosolic domain. The amplitude and duration of IRE1α signaling is critical for the transition between the adaptive and cell death programs, with particular relevance for the activation of the pro-apoptotic c-Jun N-terminal kinase (JNK) in beta cells. In the present review we discuss the available information on IRE1α-regulating proteins in beta cells and their downstream targets, and the important differences observed between cytokine-induced UPR in human and rodent beta cells.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Clic4, a novel protein that sensitizes β-cells to apoptosis
Objectives: Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis.
Methods: We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis.
Results: We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation.
Conclusions: Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad