6,241 research outputs found

    Evaluation of selected chemical processes for production of low-cost silicon, phase 3

    Get PDF
    A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2

    Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation

    Full text link
    Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional spatial compression of the X-point, respectively. In the weakly stressed case, the reconnection rate, defined as the out-of-plane electric field in the X-point (the magnetic null) normalised by the product of external magnetic field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en times being 0.04. Electron energy distribution in the current sheet, at the high energy end of the spectrum, shows a power law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfv\'en times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient. The peak reconnection rate now attains value 2.5, with the average reconnection rate over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the electrons in the current sheet attains now a steeper index of -5.5, a value close to the ones observed in the vicinity of X-type region in the Earth's magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial magnteic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated, hinting possibly to the Hall regime of the reconnection. These results strongly suggest the importance of the collionless, stressed X-point collapse as a possible contributing factor to the solution of the solar coronal heating problem or more generally, as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007

    Evaluation of selected chemical processes for production of low-cost silicon

    Get PDF
    Plant construction costs and manufacturing costs were estimated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl4 and electrolytic recovery of zinc from ZnCl2. All of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system

    Evaluation of selected chemical processes for production of low-cost silicon, phase 2

    Get PDF
    Potential designs for an integrated fluidized-bed reactor/zinc vaporizer/SiCl4 preheater unit are being considered and heat-transfer calculations have been initiated on versions of the zinc vaporizer section. Estimates of the cost of the silicon prepared in the experimental facility have been made for projected capacities of 25, 50, 75, and 100 metric ton of silicon. A 35 percent saving is obtained in going from 25 metric ton/year to the 50 metric ton/year level. This analysis, coupled with the recognition that use of two reactors in the 50 metric ton/year version allows for continued operation (at reduced capacity) with one reactor shut down, has resulted in a recommendation for adoption of an experimental facility capacity of 50 metric ton/year or greater. At this stage, the change to a larger size facility would not increase the design costs appreciably. In the experimental support program, the effects of seed bed particle size and depth were studied, and operation of the miniplant with a new zinc vaporizer was initiated, revealing the need for modification of the latter

    Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading

    Get PDF
    We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves Guéguen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD

    Potential barrier lowering and electrical transport at the LaAlO3_{3}/SrTiO3_{3} heterointerface

    Full text link
    Using a combination of vertical transport measurements across and lateral transport measurements along the LaAlO3_{3}/SrTiO3_{3} heterointerface, we demonstrate that significant potential barrier lowering and band bending are the cause of interfacial metallicity. Barrier lowering and enhanced band bending extends over 2.5 nm into LaAlO3_{3} as well as SrTiO3_{3}. We explain origins of high-temperature carrier saturation, lower carrier concentration, and higher mobility in the sample with the thinnest LaAlO3_{3} film on a SrTiO3_{3} substrate. Lateral transport results suggest that parasitic interface scattering centers limit the low-temperature lateral electron mobility of the metallic channel.Comment: 10 pages, 3 figures, and 1 tabl

    Virus + Aphids + Oats = Yellow Dwarf of Oats

    Get PDF
    Yellow dwarf turned one of Iowa\u27s best oat crops in history for most of the state into one of the worst oat crops in parts of northwestern and southern Iowa. Is it likely to happen again? Here\u27s the story

    Education in the working-class home: modes of learning as revealed by nineteenth-century criminal records

    Get PDF
    The transmission of knowledge and skills within the working-class household greatly troubled social commentators and social policy experts during the first half of the nineteenth century. To prove theories which related criminality to failures in working-class up-bringing, experts and officials embarked upon an ambitious collection of data on incarcerated criminals at various penal institutions. One such institution was the County Gaol at Ipswich. The exceptionally detailed information that survives on families, literacy, education and apprenticeships of the men, women and children imprisoned there has the potential to transform our understanding of the nature of home schooling (broadly interpreted) amongst the working classes in nineteenth-century England. This article uses data sets from prison registers to chart both the incidence and ‘success’ of instruction in reading and writing within the domestic environment. In the process, it highlights the importance of schooling in working-class families, but also the potentially growing significance of the family in occupational training
    corecore