1,633 research outputs found

    Differential rates of perinatal maturation of human primary and nonprimary auditory cortex

    Get PDF
    Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    Bose-Einstein condensation in arbitrarily shaped cavities

    Full text link
    We discuss the phenomenon of Bose-Einstein condensation of an ideal non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities, especially on the critical temperature of the system, is considered. We use two main methods which are shown to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review

    EcoEvo-MAPS: An Ecology and Evolution Assessment for Introductory through Advanced Undergraduates

    Get PDF
    A new assessment tool, Ecology and Evolution–Measuring Achievement and Progression in Science or EcoEvo-MAPS, measures student thinking in ecology and evolution during an undergraduate course of study. EcoEvo-MAPS targets foundational concepts in ecology and evolution and uses a novel approach that asks students to evaluate a series of predictions, conclusions, or interpretations as likely or unlikely to be true given a specific scenario. We collected evidence of validity and reliability for EcoEvo-MAPS through an iterative process of faculty review, student interviews, and analyses of assessment data from more than 3000 students at 34 associate’s-, bachelor’s-, master’s-, and doctoral-granting institutions. The 63 likely/unlikely statements range in difficulty and target student understanding of key concepts aligned with the Vision and Change report. This assessment provides departments with a tool to measure student thinking at different time points in the curriculum and provides data that can be used to inform curricular and instructional modifications

    Patchy Progress On Obesity Prevention: Emerging Exemplars, Entrenched Barriers, and New Thinking

    Full text link
    Although there have been positive pockets of change, no country has yet turned around its obesity epidemic. Preventing an increase in obesity prevalence will require urgent actions from government as well as a broader spectrum of stakeholders than previously emphasized. In this paper, we review a number of regulatory and non-regulatory actions taken around the world to address obesity and discuss some of the reasons for the patchy progress. In addition, we preview the papers in this Lancet series, which each identify priority actions on key obesity issues and challenge some of the entrenched dichotomies that present obesity and its solutions in “either/or” terms. Although obesity is acknowledged as a complex issue, many debates about its causes and solutions are centered around overly simple dichotomies that present seemingly competing perspectives. Examples of such dichotomies explored in this series include: individual versus environmental causes of obesity, personal versus collective responsibilities for actions, supply versus demand explanations for consumption of unhealthy food, government regulation versus industry self-regulation, top down versus bottom up drivers for change, treatment versus prevention priorities, and under versus over nutrition focus. In the current paper, we explore the dichotomy of individual versus environmental drivers of obesity, which lay out two truths: people bear some personal responsibility for their health and environmental factors can readily support or undermine the ability of people to act in their self-interest. We propose a re-framing of obesity that emphasizes the reciprocal nature of the interaction between the environment and individual. Current food environments exploit people’s biological, psychological, social, and economic vulnerabilities, making it easier for them to eat unhealthful foods. This leads to preferences and demands for foods of poor nutritional quality, thus sustaining the unhealthful food environments. Breaking these vicious cycles will need regulatory actions from governments and greater efforts from industry and civil society

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center

    Integrating Teaching and Research in Undergraduate Biology Laboratory Education

    Get PDF
    A course recently designed and implemented at Stanford University applies practical suggestions for creating research-based undergraduate courses that benefit both teaching and research

    On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    Full text link
    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure

    Casimir effect due to a single boundary as a manifestation of the Weyl problem

    Full text link
    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary we explore the relationship between such approaches, with the goal of better understanding the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978) and Deutsch and Candelas (1979), that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having geometrical origin, and an "intrinsic" term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff, and a non-geometrical intrinsic term. As by-products we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references added, version to be published in J. Phys.
    • …
    corecore