98,776 research outputs found
Aero/structural tailoring of engine blades (AERO/STAEBL)
This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases
A new method for generating and maintaining rigid formats in NASTRAN
A new method for generating and updating Rigid Formats in NASTRAN is discussed. The heart of this method is a Rigid Format data base that is in card-image format and that can therefore be easily maintained by the use of standard text editors. Each Rigid Format entry in this data base will contain the Direct Matrix Abstraction Program (DMAP) for that Rigid Format along with the related restart, subset and substructure control tables. NASTRAN will read this data base directly in every NASTRAN run and perform the necessary transformations to allow the DMAP to be processed and compiled by the NASTRAN executive. This approach will permit Rigid Formats to be changed without unnecessary compilations and relinking of NASTRAN. Furthermore, this approach will also make it very easy for users to make permanent changes to existing Rigid Formats as well as to generate their own Rigid Formats. This new method will be incorporated in a future release of the public version of NASTRAN
COSMIC/NASTRAN on the Cray Computer Systems
COSMIC/NASTRAN was converted to the CRAY computer systems. The CRAY version is currently available and provides users with access to all of the machine independent source code of COSMIC/NASTRAN. Future releases of COSMIC/NASTRAN will be made available on the CRAY soon after they are released by COSMIC
The Design and Usage of the New Data Management Features in NASTRAN
Two new data management features are installed in the April 1984 release of NASTRAN. These two features are the Rigid Format Data Base and the READFILE capability. The Rigid Format Data Base is stored on external files in card image format and can be easily maintained and expanded by the use of standard text editors. This data base provides the user and the NASTRAN maintenance contractor with an easy means for making changes to a Rigid Format or for generating new Rigid Formats without unnecessary compilations and link editing of NASTRAN. Each Rigid Format entry in the data base contains the Direct Matrix Abstraction Program (DMAP), along with the associated restart, DMAP sequence subset and substructure control flags. The READFILE capability allows an user to reference an external secondary file from the NASTRAN primary input file and to read data from this secondary file. There is no limit to the number of external secondary files that may be referenced and read
Inside the brain of an elite athlete: The neural processes that support high achievement in sports
Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance
Shock associated noise reduction from inverted-velocity-profile coannular jets
Acoustic measurements show that the shock noise from the outer stream is virtually eliminated when the inner stream is operated at a Mach number just above unity, regardless of all the other jet operating conditions. At this optimum condition, the coannular jet provides the maximum noise reduction relative to the equivalent single jet. The shock noise reduction can be achieved at inverted-as well as normal-velocity-profile conditions, provided the coannular jet is operated with the inner stream just slightly supersonic. Analytical models for the shock structure and shock noise are developed indicate that a drastic change in the outer stream shock cell structure occurs when the inner stream increases its velocity from subsonic to supersonic. At this point, the almost periodic shock cell structure of the outer stream nearly completely disappears the noise radiated is minimum. Theoretically derive formulae for the peak frequencies and intensity scaling of shock associated noise are compared with the measured results, and good agreement is found for both subsonic and supersonic inner jet flows
Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution
A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples
Structural Tailoring of Advanced Turboprops (STAT) programmer's manual
The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimizations on highly swept propfan blades. This manual describes the functionality of the STAT system from a programmer's viewpoint. It provides a top-down description of module intent and interaction. The purpose of this manual is to familiarize the programmer with the STAT system should he/she wish to enhance or verify the program's function
- …