102,430 research outputs found

    Technique for anchoring fasteners to honeycomb panels

    Get PDF
    Two-piece fastener bushing provides mounting surface for components on a three-inch thick honeycomb structure. Specially constructed starter drill and sheet metal drill permit drilling without misalignment. Tapered knife-edge cutting tool removes honeycomb core material without tearing the adjacent material

    Nonlinear phononic crystals based on chains of disks alternating with toroidal structures

    Get PDF
    We study experimentally the acoustic response of a load-bearing, phononic crystal composed of alternating steel disks, and polytetrafluoroethylene o-rings under precompression. The crystal allows for axial, rocking, and shear-polarized wavemodes when excited by a broad-band signal applied off-axis. Finite element analysis is employed to determine the system’s wave modes. The nonlinear interaction between disks and o-rings supports a dynamic response that is tunable with variations in static precompression, leading to controllable frequency shifts in a large band gap. A modal analysis reveals that four of the six principal wave modes are susceptible to external precompression while two modes are not

    Fire protection and recompression systems for a hypobaric research chamber Final report, Jul. - Dec. 1967

    Get PDF
    Fire detection-extinguishment and automatic rapid recompression systems for hypobaric spacecraft cabin simulator

    The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    Get PDF
    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A

    Harmonic generation of noble-gas atoms in the Near-IR regime using ab-initio time-dependent R-matrix theory

    Get PDF
    We demonstrate the capability of ab-initio time-dependent R-matrix theory to obtain accurate harmonic generation spectra of noble-gas atoms at Near-IR wavelengths between 1200 and 1800 nm and peak intensities up to 1.8 X 10(14) W/cm(2) . To accommodate the excursion length of the ejected electron, we use an angular-momentum expansion up to Lmax = 279. The harmonic spectra show evidence of atomic structure through the presence of a Cooper minimum in harmonic generation for Kr, and of multielectron interaction through the giant resonance for Xe. The theoretical spectra agree well with those obtained experimentally.Comment: 6 pages, 5 figure

    The Mass, Orbit, and Tidal Evolution of the Quaoar-Weywot System

    Get PDF
    Here we present new adaptive optics observations of the Quaoar-Weywot system. With these new observations we determine an improved system orbit. Due to a 0.39 day alias that exists in available observations, four possible orbital solutions are available with periods of ∼11.6\sim11.6, ∼12.0\sim12.0, ∼12.4\sim12.4, and ∼12.8\sim12.8 days. From the possible orbital solutions, system masses of 1.3−1.5±0.1×10211.3-1.5\pm0.1\times10^{21} kg are found. These observations provide an updated density for Quaoar of 2.7-5.0{g cm^{-3}}. In all cases, Weywot's orbit is eccentric, with possible values ∼0.13−0.16\sim0.13-0.16. We present a reanalysis of the tidal orbital evolution of the Quoaor-Weywot system. We have found that Weywot has probably evolved to a state of synchronous rotation, and have likely preserved their initial inclinations over the age of the Solar system. We find that for plausible values of the effective tidal dissipation factor tides produce a very slow evolution of Weywot's eccentricity and semi-major axis. Accordingly, it appears that Weywot's eccentricity likely did not tidally evolve to its current value from an initially circular orbit. Rather, it seems that some other mechanism has raised its eccentricity post-formation, or Weywot formed with a non-negligible eccentricity.Comment: Accepted to Icarus, Nov. 8 201

    Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II Accurate parameter extraction of strong sources using higher-order spin effects

    Full text link
    We improve the numerical kludge waveform model introduced in [1] in two ways. We extend the equations of motion for spinning black hole binaries derived by Saijo et al. [2] using spin-orbit and spin-spin couplings taken from perturbative and post-Newtonian (PN) calculations at the highest order available. We also include first-order conservative self-force corrections for spin-orbit and spin-spin couplings, which are derived by comparison to PN results. We generate the inspiral evolution using fluxes that include the most recent calculations of small body spin corrections, spin-spin and spin-orbit couplings and higher-order fits to solutions of the Teukolsky equation. Using a simplified version of this model in [1], we found that small body spin effects could be measured through gravitational wave observations from intermediate-mass ratio inspirals (IMRIs) with mass ratio eta ~ 0.001, when both binary components are rapidly rotating. In this paper we study in detail how the spin of the small/big body affects parameter measurement using a variety of mass and spin combinations for typical IMRIs sources. We find that for IMRI events of a moderately rotating intermediate mass black hole (IMBH) of ten thousand solar masses, and a rapidly rotating central supermassive black hole (SMBH) of one million solar masses, gravitational wave observations made with LISA at a fixed signal-to-noise ratio (SNR) of 1000 will be able to determine the inspiralling IMBH mass, the central SMBH mass, the SMBH spin magnitude, and the IMBH spin magnitude to within fractional errors of ~0.001, 0.001, 0.0001, and 9%, respectively. LISA can also determine the location of the source in the sky and the SMBH spin orientation to within ~0.0001 steradians. We show that by including conservative corrections up to 2.5PN order, systematic errors no longer dominate over statistical errors for IMRIs with typical SNR ~1000.Comment: 21 pages, 7 figures. v2: three references added, edits in Sections II-V, including additional results in Section V to address comments by the referee. v3: mirrors version accepted to PR

    Rocket studies of solar corona and transition region

    Get PDF
    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined
    • …
    corecore