2,030 research outputs found

    The mixed problem for the Laplacian in Lipschitz domains

    Full text link
    We consider the mixed boundary value problem or Zaremba's problem for the Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We assume that the boundary between the sets where we specify Dirichlet and Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p and the Dirichlet data is in the Sobolev space of functions having one derivative in L^p for some p near 1. Under these conditions, there is a unique solution to the mixed problem with the non-tangential maximal function of the gradient of the solution in L^p of the boundary. We also obtain results with data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since the paper appeared long ago, this submission includes the complete paper, followed by a short section that gives the correction to one step in the proo

    Cardiovascular Risk Associated with Interactions among Polymorphisms in Genes from the Renin-Angiotensin, Bradykinin, and Fibrinolytic Systems

    Get PDF
    Vascular fibrinolytic balance is maintained primarily by interplay of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1). Previous research has shown that polymorphisms in genes from the renin-angiotensin (RA), bradykinin, and fibrinolytic systems affect plasma concentrations of both t-PA and PAI-1 through a set of gene-gene interactions. In the present study, we extend this finding by exploring the effects of polymorphisms in genes from these systems on incident cardiovascular disease, explicitly examining two-way interactions in a large population-based study

    Decarbonisation and its discontents: a critical energy justice perspective on four low-carbon transitions

    Get PDF
    Low carbon transitions are often assumed as normative goods, because they supposedly reduce carbon emissions, yet without vigilance there is evidence that they can in fact create new injustices and vulnerabilities, while also failing to address pre-existing structural drivers of injustice in energy markets and the wider socio-economy. With this in mind, we examine four European low-carbon transitions from an unusual normative perspective: that of energy justice. Because a multitude of studies looks at the co-benefits renewable energy, low-carbon mobility, or climate change mitigation, we instead ask in this paper: what are the types of injustices associated with low-carbon transitions? Relatedly, in what ways do low-carbon transitions worsen social risks or vulnerabilities? Lastly, what policies might be deployed to make these transitions more just? We answer these questions by first elaborating an “energy justice” framework consisting of four distinct dimensions—distributive justice (costs and benefits), procedural justice (due process), cosmopolitan justice (global externalities), and recognition justice (vulnerable groups). We then examine four European low-carbon transitions—nuclear power in France, smart meters in Great Britain, electric vehicles in Norway, and solar energy in Germany—through this critical justice lens. In doing so, we draw from original data collected from 64 semi-structured interviews with expert partisans as well as five public focus groups and the monitoring of twelve internet forums. We document 120 distinct energy injustices across these four transitions, including 19 commonly recurring injustices. We aim to show how when low-carbon transitions unfold, deeper injustices related to equity, distribution, and fairness invariably arise

    Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials

    Get PDF
    Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field

    Genetic Effects on the Correlation Structure of CVD Risk Factors: Exome-Wide Data From a Ghanaian Population

    Get PDF
    Plasma concentration of plasminogen activator inhibitor-1 (PAI-1) is highly correlated with several cardiovascular disease (CVD) risk factors. It also plays a direct role in CVD, including myocardial infarction and stroke, by impeding the dissolution of thrombi in the blood. Insofar as PAI-1 links CVD's risk factors to its endpoints, genetic variants modulating the relationship between PAI-1 and risk factors may be of particular clinical and biological interest. The high heritability of PAI-1, which has not been explained by genetic association studies, may also, in large part, be due to this relationship with CVD risk factors. Using exome-wide data from 1,032 Ghanaian study participants, we tested for heterogeneity of correlation by genotype between PAI-1 and 4 CVD risk factors (body mass index, triglycerides, mean arterial pressure, and fasting glucose) under the hypothesis that loci involved in the relationship between PAI-1 and other risk factors will also modify their correlational structure. We found more significant heterogeneities of correlation by genotype than we found marginal effects, with no evidence of type I inflation. The most significant result among all univariate and multivariate tests performed in this study was the heterogeneity of correlation between PAI-1 and mean arterial pressure at rs10738554, near SLC24A2, a gene previously associated with high blood pressure in African Americans

    "It's making contacts" : notions of social capital and implications for widening access to medical education

    Get PDF
    Acknowledgements Our thanks to the Medical Schools Council (MSC) of the UK for funding Study A; REACH Scotland for funding Study B; and Queen Mary University of London, and to the medical school applicants and students who gave their time to be interviewed. Our thanks also to Dr Sean Zhou and Dr Sally Curtis, and Manjul Medhi, for their help with data collection for studies A and B respectively. Our thanks also to Dr Lara Varpio, Uniformed Services University of the USA, for her advice and guidance on collating data sets and her comments on the draft manuscript.Peer reviewedPublisher PD

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
    • 

    corecore