4,137 research outputs found

    Wideband Agile Digital Microwave Radiometer

    Get PDF
    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack

    Recommendations for evaluation and management of bone disease in HIV

    Get PDF
    Thirty-four human immunodeficiency virus (HIV) specialists from 16 countries contributed to this project, whose primary aim was to provide guidance on the screening, diagnosis, and monitoring of bone disease in HIV-infected patients. Four clinically important questions in bone disease management were identified, and recommendations, based on literature review and expert opinion, were agreed upon. Risk of fragility fracture should be assessed primarily using the Fracture Risk Assessment Tool (FRAX), without dual-energy X-ray absorptiometry (DXA), in all HIV-infected men aged 40-49 years and HIV-infected premenopausal women aged ≥40 years. DXA should be performed in men aged ≥50 years, postmenopausal women, patients with a history of fragility fracture, patients receiving chronic glucocorticoid treatment, and patients at high risk of falls. In resource-limited settings, FRAX without bone mineral density can be substituted for DXA. Guidelines for antiretroviral therapy should be followed; adjustment should avoid tenofovir disoproxil fumarate or boosted protease inhibitors in at-risk patients. Dietary and lifestyle management strategies for high-risk patients should be employed and antiosteoporosis treatment initiated

    Field-warmed soil carbon changes imply high 21st-century modeling uncertainty

    Get PDF
    The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is traditionally estimated from short-term respiration measurements – either from laboratory incubations that are artificially manipulated or from field measurements that cannot distinguish between plant and microbial respiration. To address these limitations of previous approaches, we developed a new method to estimate soil temperature sensitivity (Q10) of soil carbon directly from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2  =  0.96), revealing Q10 across sites of 2.2 [1.6, 2.7] 95 % confidence interval (CI). When these field-derived Q10 values were extrapolated over the 21st century using a post hoc correction of 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system model outputs, the multi-model mean soil carbon stock changes shifted from the previous value of 88 ± 153 Pg carbon (weighted mean ± 1 SD) to 19 ± 155 Pg carbon with a Q10-driven 95 % CI of 248 ± 191 to −95 ± 209 Pg carbon. On average, incorporating the field-derived Q10 values into Earth system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each model; intra-model uncertainty driven by the field-derived Q10 was as great as that between model variation. This study demonstrates that data integration should capture the variation of the system, as well as mean trends

    The Solar Neighborhood XV: Discovery of New High Proper Motion Stars with mu >= 0.4"/yr between Declinations -47 degrees and 00 degrees

    Full text link
    We report the discovery of 152 new high proper motion systems (mu >= 0.4"/yr) in the southern sky (Declination = -47 degrees to 00 degrees) brighter than UKST plate R_{59F} =16.5 via our SuperCOSMOS-RECONS (SCR) search. This paper complements Paper XII in The Solar Neighborhood series, which covered the region from Declination = -90 degrees to -47 degrees and discussed all 147 new systems from the southernmost phase of the search. Among the total of 299 systems from both papers, there are 148 (71 in Paper XII, 77 in this paper) new systems moving faster than 0.5"/yr that are additions to the classic ``LHS'' (Luyten Half Second) sample. These constitute an 8% increase in the sample of all stellar systems with mu >= 0.5"/yr in the southern sky. As in Paper XII, distance estimates are provided for the systems reported here based upon a combination of photographic plate magnitudes and 2MASS photometry, assuming all stars are on the main sequence. Two SCR systems from the portion of the sky included in this paper are anticipated to be within 10 pc, and an additional 23 are within 25 pc. In total, the results presented in Paper XII and here for this SCR sweep of the entire southern sky include five new systems within 10 pc and 38 more between 10 and 25 pc. The largest number of nearby systems have been found in the slowest proper motion bin, 0.6"/yr > mu >= 0.4"/yr, indicating that there may be a large population of low proper motion systems very near the Sun.Comment: 36 pages, 5 figures, accepted for publication in Astronomical Journa

    GCH1 haplotypes and cardiovascular risk in HIV

    Get PDF
    Heightened systemic inflammation contributes to cardiovascular (CVD) events in people living with HIV (PLWH), though not all PLWH develop CVD, thus suggesting a genetic modifying role. We examined GCH1 polymorphisms, which have been associated with reduced endothelial function in European populations with CVD and increased inflammation, in a racially diverse cohort of U.S. PLWH initiating antiretroviral therapy (ART). GCH1 polymorphisms differed by race and were not associated flow-mediated dilation or carotid intima media thickness before or after 48 weeks of ART

    Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function

    Get PDF
    Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia
    • …
    corecore