25,434 research outputs found

    Exercise epigenetics and the foetal origins of disease

    Get PDF
    Exercise epigenetics is a nascent area of research with vast health implications (e.g., from the treatment of obesity-related diseases to beneficially decoupling epigenetic and chronological age). Evidence is accumulating [1] that exercise can acutely modify the epigenome (e.g., via DNA methylation) for short-term regulatory purposes (e.g., mRNA expression). More speculatively perhaps, maternal exercise during the pre and post–partum period could cause epigenetic changes in offspring. It is generally believed that there are benefits of regular moderate exercise during pregnancy [2]. The phenotypic benefits of maternal exercise notwithstanding, exercise can be viewed as a type of organismal stressor [1]. There are a myriad of ways in which environmental perturbations can affect foetal development. For example gestational stress could alter the epigenome and subsequent physical development. We suggest that maternal exercise -- like most gestational stressors -- will have a dose-response relationship on an offspring’s epigenome (i.e., negative effects at high doses), akin to the phenomenon of hormesis. Interestingly there is no research investigating the epigenetic effects of maternal exercise in humans. This editorial is a call for research on the subject

    Production and Price Effects of New Diseases and Other Challenges Confronting the Processed Orange Industry

    Get PDF
    Sao Paulo and Florida are the primary producers of orange juice. Both regions face production challenges. In this paper, a model of the world orange juice market is used to analyze the effect of citrus greening and high sugarcane prices on the production and price of orange juice.Crop Production/Industries, Demand and Price Analysis, Production Economics,

    Online Drift Compensation for Chemical Sensors Using Estimation Theory

    Get PDF
    Sensor drift from slowly changing environmental conditions and other instabilities can greatly degrade a chemical sensor\u27s performance, resulting in poor identification and analyte quantification. In the present work, estimation theory (i.e., various forms of the Kalman filter) is used for online compensation of baseline drift in the response of chemical sensors. Two different cases, which depend on the knowledge of the characteristics of the sensor system, are studied. First, an unknown input is considered, which represents the practical case of analyte detection and quantification. Then, the more general case, in which the sensor parameters and the input are both unknown, is studied. The techniques are applied to simulated sensor data, for which the true baseline and response are known, and to actual liquid-phase SH-SAW sensor data measured during the detection of organophosphates. It is shown that the technique is capable of estimating the baseline signal and recovering the true sensor signal due only to the presence of the analyte. This is true even when the baseline drift changes rate or direction during the detection process or when the analyte is not completely flushed from the system

    Near Infrared Surface Properties of the Two Intrinsically Brightest Minor Planets (90377) Sedna and (90482) Orcus

    Get PDF
    We present low resolution K band spectra taken at the Gemini 8 meter telescope of (90377) Sedna and (90482) Orcus (provisional designations 2003 VB12 and 2004 DW, respectively), currently the two minor planets with the greatest absolute magnitudes (i.e. the two most reflective minor planets). We place crude limits on the surface composition of these two bodies using a Hapke model for a wide variety of assumed albedos. The unusual minor planet (90377) Sedna was discovered on November 14, 2003 UT at roughly 90 AU with 1.6 times the heliocentric distance and perihelion distance of any other bound minor planet. It is the first solar system object discovered between the Kuiper Belt and the Oort Cloud, and may represent a transition population between the two. The reflectance spectrum of (90377) Sedna appears largely featureless at the current signal-to-noise ratio, suggesting a surface likely to be highly processed by cosmic rays. For large grain models (100 micron to 1 cm) we find that (90377) Sedna must have less than 70% surface fraction of water ice and less than 60% surface fraction of methane ice to 3 sigma confidence. Minor planet (90482) Orcus shows strong water ice absorption corresponding to less than 50% surface fraction for grain models 25 micron and larger. Orcus cannot have more than 30% of its surface covered by large (100 mm to 1 cm) methane grains to 3 sigma confidence.Comment: Accepted for publication in the Astrophysical Journa

    Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs

    Get PDF
    Rocaglamide has been reported to sensitize several cell types to TRAIL-induced apoptosis. In recent years, advances in synthetic techniques have led to generation of novel rocaglamide analogs. However, these have not been extensively analyzed as TRAIL sensitizers, particularly in TRAIL-resistant renal cell carcinoma cells. Evaluation of rocaglamide and analogs identified 29 compounds that are able to sensitize TRAIL-resistant ACHN cells to TRAIL-induced, caspase-dependent apoptosis with sub-µM potency which correlated with their potency as protein synthesis inhibitors and with loss of cFLIP protein in the same cells. Rocaglamide alone induced cell cycle arrest, but not apoptosis. Rocaglates averaged 4–5-fold higher potency as TRAIL sensitizers than as protein synthesis inhibitors suggesting a potential window for maximizing TRAIL sensitization while minimizing effects of general protein synthesis inhibition. A wide range of other rocaglate effects (e.g. on JNK or RAF-MEK-ERK signaling, death receptor levels, ROS, ER stress, eIF4E phosphorylation) were assessed, but did not contribute to TRAIL sensitization. Other than a rapid loss of MCL-1, rocaglates had minimal effects on mitochondrial apoptotic pathway proteins. The identification of structurally diverse/mechanistically similar TRAIL sensitizing rocaglates provides insights into both rocaglate structure and function and potential further development for use in RCC-directed combination therapy.This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported [in part] by the Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research. Research performed at Boston University was supported in part by NIH R35 GM118173. Work at the BU-CMD is supported by R24 GM111625. (HHSN261200800001E - National Cancer Institute, National Institutes of Health; Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research; R35 GM118173 - NIH; R24 GM111625)Published versio

    The State of Health Insurance in California: Findings From the 2003 California Health Interview Survey

    Get PDF
    Provides an overview of the shift from job-based health insurance to enrollment in public insurance programs, and discusses the advantages and disadvantages of key public policy options to extend coverage to California's uninsured residents

    Carbonic Anhydrase in Certain Species of Plants

    Get PDF
    Author Institution: Charles F. Kettering Foundation, Yellow Springs, Ohi

    POPULATION STRUCTURE OF THE BOTTLENOSE DOLPHIN ( TURSIOPS TRUNCATUS ) AS DETERMINED BY RESTRICTION ENDONUCLEASE ANALYSIS OF MITOCHONDRIAL DNA

    Full text link
    Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73329/1/j.1748-7692.1993.tb00439.x.pd
    • …
    corecore