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Exercise epigenetics is a nascent area of research with vast health implications (e.g., from the 

treatment of obesity-related diseases to beneficially decoupling epigenetic and chronological 

age). Evidence is accumulating [1] that exercise can acutely modify the epigenome (e.g., via 

DNA methylation) for short-term regulatory purposes (e.g., mRNA expression). More 

speculatively perhaps, maternal exercise during the pre and post–partum period could cause 

epigenetic changes in offspring. It is generally believed that there are benefits of regular 

moderate exercise during pregnancy [2]. The phenotypic benefits of maternal exercise 

notwithstanding, exercise can be viewed as a type of organismal stressor [1]. There are a 

myriad of ways in which environmental perturbations can affect foetal development. For 
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example gestational stress could alter the epigenome and subsequent physical development. 

We suggest that maternal exercise -- like most gestational stressors -- will have a dose-

response relationship on an offspring’s epigenome (i.e., negative effects at high doses), akin 

to the phenomenon of hormesis. Interestingly there is no research investigating the epigenetic 

effects of maternal exercise in humans. This editorial is a call for research on the subject.  

 

Effects of maternal exercise on offspring health  

There are physiological benefits to exercise during pregnancy for the mother and it is 

commonly accepted that low to moderate intensity exercise would have no negative effects 

on the developing foetus [3]. However, little research has been conducted on the phenotypic 

effects of offspring at higher intensities maternal exercise. One notable study tested six 

pregnant Olympic-level athletes at high levels of (~90 percent) of oxygen consumption on a 

treadmill at 23-26 weeks. Fetal bradycardia and high umbilical artery pulsatility occurred 

when women exercised more than 90% of maximal heart rate [4].      

 

The current literature indicates that there are costs and benefits of maternal exercise. Bick-

Sander et al., [5] showed an increase in postnatal hippocampal neurogenesis following 

voluntary wheel running ad libitum in mice samples. Alongside this, May et al., [6] 

demonstrated a decrease in foetal heart rate and increase in stroke volume following data 

collected at 36 weeks gestational age from regularly exercising pregnant women (> 30 min of 

aerobic exercise, 3× per week). Further to this, May et al., [7] showed that resting foetal heart 

rate of exercised mothers exhibited a trained response. Carter et al., [8] demonstrate an 

enhancement of insulin sensitivity and improvement of offspring glucose homeostasis in rats 

with mothers who exercised on a wheel ad libitum during preconception and mating. This is 



consistent with Prather et al., [9], who note that pre and perinatal exercise in humans is 

important for lowering adult disease risk (i.e., diabetes and cardiovascular disease). 

 

Beyond the study of six Olympic-level athletes discussed above (i.e., short-term negative 

effects on offspring of a single bout of maternal exercise), other research has shown negative 

effects (e.g., growth restriction) of maternal exercise that continued throughout pregnancy. 

For example, Clapp III et al., [10] demonstrate a reduction in foetal size from pregnancies 

where mothers who were well-conditioned recreational runner and dancers who maintained 

their exercise regimen at 50% or above the preconceptional level throughout pregnancy. It 

has been shown that exercising beyond pre-conception levels could limit foetal growth. 

Specifically, a regular running and/or aerobics program at or above 50% of preconception 

levels in the last 5 months of pregnancy explained 40% of the variability in birth weight over 

an 1100g birth weight range [10]. Hopkins et al., [11] demonstrated significantly lower birth 

weight in offspring born to women undertaking a low intensity home-based stationary cycle 

intervention programme from week 20 of gestation till the delivery. 

 

Hormesis 

We feel that the aforementioned negative and positive phenotypic consequences on offspring 

of maternal exercise may be due to epigenetic based dose-response hormesis. Hormesis 

theorises that biological systems respond in a bell-shaped curve when exposed to stresses 

such as exercise, radiation or toxins [12]. Recent work by Bernal et al [13] provided evidence 

in the isogenic A(vy) mouse model that positive adaptive epigenetic changes result from low 

dose ionizing radiation (i.e., radiation hormesis). Why would this be the case? It is important 

to remember that life emerged under relatively toxic conditions (e.g., acidic, anoxic and 

higher radiation than today). Indeed species still thrive under these seemingly stressful 



conditions. Likewise, physical activity for the majority of animal evolution was likely a 

source of organismal stress. Specifically, ancestral physical activities ranged from moderately 

costly dispersal or daily foraging strategies to extremely costly forms of interspecific and 

intraspecific competition, both of which had fitness consequences on our ancestors. Modern 

exercise likely mimics ancient (i.e., predating Animalia) ancestral stress adaptation pathways 

in a variety of unappreciated subtle ways. For example the organismal stress induced by 

exercise may lead to positive biological outcomes through exercise-induced reactive oxygen 

species [14] in part because our distant ancestors have been adapted to anoxic environments 

for millions of years.  Regardless of the exact causes, hormesis models (Fig. 1) predict that 

maternal exercise during gestation could have beneficial effects on the epigenome and 

subsequent development at low versus high doses.  

Figure 1 | Hypothesised foetal epigenetic effects of maternal exercise.   

 

 

 



Testing the hypothesis: How to develop an exercise epigenetics programme 

Recent evidence suggests that in mice, maternal exercise can alter an offspring’s epigenome. 

Specifically, Laker et al, [15] have shown in C57BL/6 mice that maternal exercise during 

gestation reduces high fat diet-induced Pgc-1a hypermethylation and ameliorates age-related 

metabolic dysfunction at 9 months of age. Building upon Laker et al [15] would be to use an 

agouti mouse model. Specifically previous work by Waterland & Jirtle [16] show that in 

variable yellow agouti mice (Avy/a ), dietary methyl supplementation of a/a dams with extra 

folic acid, vitamin B12, choline, and betaine alter the phenotype of their Avy/a offspring. The 

underlying mechanism is increased CpG methylation at the Avy locus. Waterland & Jirtle [16] 

conclude that dietary supplementation, long presumed to be beneficial, may have inadvertent 

detrimental influences on the establishment of epigenetic gene regulation at high doses. This 

is consistent with the hormesis model but no work has investigated whether exercise at 

varying doses will exert similar effects as shown maternal diet-based agouti system. 

 

Pre and peri-natal nutrition likely effects adult metabolism in humans, potentially via 

modifications in DNA methylation [17]. Kaati et al., [18] found that a paternal grandfathers' 

food intake during childhood was associated with mortality risk in grandsons. Poor maternal 

nutrition correlates with low birth weight and adult onset diseases in epidemiological studies 

[14]. The underlying mechanisms – epigenetic or otherwise -- for these effects remain to be 

determined. However, using the maternal diet-based agouti system [16] to study exercise 

epigenetics would be worthwhile as the epigenetic effects are clear and repeatable. 

Specifically maternal exercise manipulations could expose offspring’s epigenomes to various 

levels of stress, in utero. We hypothesise that hormesis epigenetic and phenotypic effects will 

occur due to exercise as they have with maternal nutrition [16].  

 



Concluding remarks  

Changes to the foetal epigenome arise during pregnancy through changes in maternal 

environment. Exercise should be added to the candidate list of maternal effects on offspring’s 

epigenome.  Importantly we hypothesise that the effects of maternal exercise on the foetal 

epigenome are dose-dependent (i.e., beneficial at low to moderate doses and costly at high 

doses as depicted in Fig 1). We also suspect that the same epigenetic patterns will be revealed 

as the previous work on nutrition and radiation hormesis in agouti mouse studies.  

 

Recall in Figure 1 the exercise epigenetics hormesis model predicts that low doses of 

maternal exercise will benefit offspring growth, while higher doses will be detrimental. 

According to Clapp et al., [20; 2] the key variables are volume and timing of maternal 

exercise.  The phenotypic evidence could not be clearer when comparing Clapp et al., [20] to 

Clapp et al., [2]. Specifically, Clapp et al., [20] show that moderate maternal exercise during 

early pregnancy causes enhanced foetal growth; however Clapp et al., [2] show that high 

volume of maternal exercise during later stages of pregnancy is detrimental to foetal growth 

[20]. We feel that this phenotypic evidence is consistent with the hormesis model presented 

here.  

 

The underlying molecular epigenetic mechanisms (if any) for the maternal effects of exercise 

have yet to be studied using the highly tractable agouti mouse model. Despite an absence of 

evidence for any effects of exercise at the AVY locus, the most studied epigenetic phenomenon 

-- genomic imprinting – is strongly linked to energy homeostasis (including energy 

expenditure) [21]. Genomic imprinting is the differential expression of genes depending on 

parent-of-origin (note: epigenetic imprints are erased each generation). It is likely that 

imprinted regions are implicated in agouti mouse hormesis and will figure prominently in the 



field of exercise epigenetics. Human research is needed to validate any work on the 

epigenetic effects of maternal exercise using agouti mouse models. A comparative approach 

is particularly important to adopt as despite overlap [21], some of the key epigenetic elements 

(e.g., imprinted genes) responsible for regulating hunger, energy expenditure, adiposity, 

glucose homeostasis and possibly exercise-induced DNA methylation may well be 

differentially imprinted (or read differently) in mouse and man.  
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