144 research outputs found

    Identification of estrogenic compounds in fish bile using bioassay-directed fractionation

    Get PDF
    Conjugates of estrogenic chemicals, endogenous as well as xenobiotic, are mainly excreted via bile into the intestine. Therefore, measurement of estrogenic activity in bile yields useful information about an organism's internal exposure to (xeno-)estrogens. Although previous studies in The Netherlands have reported estrogenic activity in male fish bile, the contribution of natural hormones and xenobiotic substances to this activity is unknown. To identify compounds responsible for estrogenic activity in fish bile, we developed a bioassay-directed fractionation method for estrogenic chemicals. In this approach, the in vitro reporter gene assay ER-CALUX (Estrogen Responsive Chemical Activated Luciferase Gene Expression) was used to assess estrogenic activity in deconjugated bile samples and to direct RP-HPLC fractionation and chemical analysis (by GC-MS) of estrogenic compounds. The method was applied to bile from male breams (Abramis brama) collected at three locations in The Netherlands. At one of these locations, the River Dommel, extremely high levels of plasma vitellogenin and a high incidence of intersex gonads in these male breams have previously been observed, indicating the exposure to estrogens. In this study, the natural hormones 17β-estradiol, estrone, and estriol accounted for the majority of estrogenic activity in male bream bile. At the River Dommel, the synthetic contraceptive pill component ethynylestradiol was found in effective concentrations as well. The detected natural and synthetic hormones may be responsible for the estrogenic effects observed in wild bream from this location. Furthermore, a large number of xenobiotic chemicals was detected at relatively high levels in bile, including triclosan, chloroxylenol, and clorophene. Although chloroxylenol was shown for the first time to be weakly estrogenic, these compounds did not contribute significantly to the estrogenic activity observed

    Biological validation of a sample preparation method for ER-CALUX bioanalysis of estrogenic activity in sediments using mixtures of xeno-estrogens

    Get PDF
    The combined estrogenic effects of mixtures of environmental pollutants in the in vitro ER-CALUX (chemical activated luciferase gene expression) bioassay were examined to biologically validate a sample preparation method for the analysis of estrogenic compounds in sediment. The method used accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) and was validated with respect to recovery of biological response taking mixture effects into account. Four mixtures of three to six xeno-estrogenic compounds (bisphenol A, 4-nonylphenol, (4,4`-dichlorodiphenyl)trichloroethane, (2,4`-dichlorodiphenyl)trichloroethane, dieldrin, 4-n-octylphenol, ¿-chlordane, dibutylphthalate, (4,4`-dichlorodiphenyl)dichloroethylene, and 2,4,5-trichlorobiphenyl) were prepared. Experimentally determined mixture effects were well described by the concept of concentration addition (CA), as expected for similarly acting compounds. Observed estradiol equivalence factors of the mixtures (on average 1.2 ± 0.3) agreed very well with the value predicted according to CA. The sample preparation method was then applied to pure mixtures of standards and to sediment spiked with one of the mixtures. Recoveries of estrogenic compounds were estimated by determination of their mixture potencies in ER-CALUX and compared to the mixture effects predicted by CA. Recoveries of estrogenic activity were between 80 and 129%, indicating that the additive behavior of mixtures of xeno-estrogens is well conserved during sample preparation. Together with an average repeatability of 18.3%, low average limit of detection (2.6 ± 1.8 pg of EEQ/g), and coefficient of variance (3.5 ± 3.3%), this demonstrated the suitability of the sample preparation method for the analysis of mixtures of (xeno-)estrogenic compounds in sediment with the ER-CALUX assa

    Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients

    Get PDF
    After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3–5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.</p

    A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions

    Get PDF
    AbstractAssessing progress towards healthier people, farms and landscapes through nutrition-sensitive agriculture (NSA) requires transdisciplinary methods with robust models and metrics. Farm-household models could facilitate disentangling the complex agriculture-nutrition nexus, by jointly assessing performance indicators on different farm system components such as farm productivity, farm environmental performance, household nutrition, and livelihoods. We, therefore, applied a farm-household model, FarmDESIGN, expanded to more comprehensively capture household nutrition and production diversity, diet diversity, and nutrient adequacy metrics. We estimated the potential contribution of an NSA intervention targeting the diversification of home gardens, aimed at reducing nutritional gaps and improving livelihoods in rural Vietnam. We addressed three central questions: (1) Do 'Selected Crops' (i.e. crops identified in a participatory process) in the intervention contribute to satisfying household dietary requirements?; (2) Does the adoption of Selected Crops contribute to improving household livelihoods (i.e. does it increase leisure time for non-earning activities as well as the dispensable budget)?; and (3) Do the proposed nutrition-related metrics estimate the contribution of home-garden diversification towards satisfying household dietary requirements? Results indicate trade-offs between nutrition and dispensable budget, with limited farm-household configurations leading to jointly improved nutrition and livelihoods. FarmDESIGN facilitated testing the robustness and limitations of commonly used metrics to monitor progress towards NSA. Results indicate that most of the production diversity metrics performed poorly at predicting desirable nutritional outcomes in this modelling study. This study demonstrates that farm-household models can facilitate anticipating the effect (positive or negative) of agricultural interventions on nutrition and the environment, identifying complementary interventions for significant and positive results and helping to foresee the trade-offs that farm-households could face. Furthermore, FarmDESIGN could contribute to identifying agreed-upon and robust metrics for measuring nutritional outcomes at the farm-household level, to allow comparability between contexts and NSA interventions

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    Everolimus- and sirolimus-eluting stents in patients with and without ST-segment elevation myocardial infarction

    Get PDF
    Aims Everolimus-eluting stents (EES) were superior to sirolimus-eluting stents (SES) in a dedicated myocardial infarction trial, a finding that was not observed in trials with low percentages of ST-elevation myocardial infarction (STEMI). Therefore, this study sought to investigate the influence of clinical presentation on outcome after EES and SES implantation. Methods A pooled population of 1602 randomised patients was formed from XAMI (acute MI trial) and APPENDIXAMI (all-comer trial). Primary outcome was cardiac mortality, MI and target vessel revascularisation at 2 years. Secondary endpoints included definite/probable stent thrombosis (ST). Adjustment was done using Cox regression. Results In total, 902 EES and 700 SES patientswere included, of which 44%STEMI patients (EES 455; SES 257) and 56% without STEMI (EES 447; SES 443). In the pooled population, EES and SES showed similar outcomes during followup. Moreover, no differences in the endpoints were observed after stratification according to presentation. Although a trend toward reduced early definite/probable ST was observed in EES compared with SES in STEMI patients, long-term ST rates were low and comparable. Conclusions EES and SES showed a similar outcome during 2-year follow-up, regardless of clinical presentation. Longterm safety was excellent for both devices, despite wide inclusion criteria and a large sub-population of STEMI patients

    Statistical properties of phases and delay times of the one-dimensional Anderson model with one open channel

    Full text link
    We study the distribution of phases and of Wigner delay times for a one-dimensional Anderson model with one open channel. Our approach, based on classical Hamiltonian maps, allows us an analytical treatment. We find that the distribution of phases depends drastically on the parameter σA=σ/sink\sigma_A = \sigma/sin k where σ2\sigma^2 is the variance of the disorder distribution and kk the wavevector. It undergoes a transition from uniformity to singular behaviour as σA\sigma_A increases. The distribution of delay times shows universal power law tails  1/τ2~ 1/\tau^2, while the short time behaviour is σA\sigma_A- dependent.Comment: 4 pages, 2 figures, Submitted to PR

    Excitation Spectra and Thermodynamic Response of Segmented Heisenberg Spin Chains

    Full text link
    The spectral and thermodynamic response of segmented quantum spin chains is analyzed using a combination of numerical techniques and finite-size scaling arguments. Various distributions of segment lengths are considered, including the two extreme cases of quenched and annealed averages. As the impurity concentration is increased, it is found that (i) the integrated spectral weight is rapidly reduced, (ii) a pseudo-gap feature opens up at small frequencies, and (iii) at larger frequencies a discrete peak structure emerges, dominated by the contributions of the smallest cluster segments. The corresponding low-temperature thermodynamic response has a divergent contribution due to the odd-site clusters and a sub-dominant exponentially activated component due to the even-site segments whose finite-size gap is responsible for the spectral weight suppression at small frequencies. Based on simple scaling arguments, approximate low-temperature expressions are derived for the uniform susceptibility and the heat capacity. These are shown to be in good agreement with numerical solutions of the Bethe ansatz equations for ensembles of open-end chains.Comment: RevTex, 9 pages with 6 figure

    A Diagrammatic Theory of Random Scattering Matrices for Normal-Superconducting Mesoscopic Junctions

    Full text link
    The planar-diagrammatic technique of large-NN random matrices is extended to evaluate averages over the circular ensemble of unitary matrices. It is then applied to study transport through a disordered metallic ``grain'', attached through ideal leads to a normal electrode and to a superconducting electrode. The latter enforces boundary conditions which coherently couple electrons and holes at the Fermi energy through Andreev scattering. Consequently, the {\it leading order} of the conductance is altered, and thus changes much larger than e2/he^2/h are observed when, e.g., a weak magnetic field is applied. This is in agreement with existing theories. The approach developed here is intermediate between the theory of dirty superconductors (the Usadel equations) and the random-matrix approach involving transmission eigenvalues (e.g. the DMPK equation) in the following sense: even though one starts from a scattering formalism, a quantity analogous to the superconducting order-parameter within the system naturally arises. The method can be applied to a variety of mesoscopic normal-superconducting structures, but for brevity we consider here only the case of a simple disordered N-S junction.Comment: 39 pages + 9 postscript figure
    • …
    corecore