17 research outputs found

    Complete genome sequences of Incl1 Plasmids carrying extended-spectrum B-Lactamase genes

    Get PDF
    Extended spectrum beta-lactamases (ESBLs) confer resistance to clinically relevant antibiotics. Often, the resistance genes are carried by conjugative plasmids which are responsible for dissemination. Five IncI1 plasmids carrying ESBLs from commensal and clinical Escherichia coli isolates were completely sequenced and annotated along with a non-ESBL carrying IncI1 plasmid

    E. cloacae complex 3568 containing blaIMI-1 encoded on an EcloIMEX putative mobile element.

    No full text
    E. cloacae complex 3568 was isolated from farm grown shrimps imported from Vietnam. The isolate is carbapenem resistant and sequence data showed that the carbapenmase blaIMI-1 is encoded on an EcloIMEX putative mobile element

    E. cloacae complex 3568 containing blaIMI-1 encoded on an EcloIMEX putative mobile element.

    No full text
    E. cloacae complex 3568 was isolated from farm grown shrimps imported from Vietnam. The isolate is carbapenem resistant and sequence data showed that the carbapenmase blaIMI-1 is encoded on an EcloIMEX putative mobile element

    Changes in Fecal Carriage of Extended-Spectrum ß-Lactamase Producing Enterobacterales in Dutch Veal Calves by Clonal Spread of Klebsiella pheumoniae

    No full text
    This study aimed to characterize the changes in fecal carriage of Extended-Spectrum β-Lactamase (ESBL) producing Enterobacterales (ESBL-PE) in a single Dutch veal calves. During the rearing period at the Dutch veal farm, a decrease in fecal carriage of cefotaxime-resistant Escherichia coli isolates was observed after 2 weeks at the veal farm, while an increase of cefotaxime-resistant Klebsiella pneumoniae isolates was demonstrated. E. coli and K. pneumoniae were isolated from rectal swabs collected from 110 veal calves in week 2, 6, 10, 18, and 24 after their arrival at the farm. ESBL-PE isolates were selectively cultured and identified by MALDI-TOF. ESBL genes were characterized by RT-PCR, PCRs, and amplicon sequencing. A total of 80 E. coli and 174 K. pneumoniae strains were isolated from 104 out of 110 veal calves. The prevalence of ESBL-E. coli decreased from week 2 (61%) to week 6 (7%), while an unexpected increase in ESBL-K. pneumoniae colonization was detected in week 6 (80%). The predominant ESBL genes detected in E. coli isolates were blaCTX-M-15 and the non-ESBL gene blaTEM-1a, while in K. pneumoniae blaCTX-M-14 gene was detected in all isolates. Four cefotaxime-resistant K. pneumoniae isolates were randomly selected and characterized in deep by transformation, PCR-based replicon typing, and whole-genome sequencing (WGS). The clonal relatedness of a subgroup of nine animals carrying K. pneumoniae ESBL genes was investigated by Multi Locus sequence typing (MLST). In four ESBL-K. pneumoniae isolates, blaCTX-M-14 was located on IncFIIK and IncFIINK plasmid replicons and the isolates were multi-drug resistant (MDR). MLST demonstrated a clonal spread of ESBL-K. pneumoniae ST107. To the best of our knowledge, this is the first study to report a change in fecal carriage of ESBL-PE over time in the same veal calf during the rearing period

    E. cloacae complex 3568 containing blaIMI-1 encoded on an EcloIMEX putative mobile element.

    No full text
    E. cloacae complex 3568 was isolated from farm grown shrimps imported from Vietnam. The isolate is carbapenem resistant and sequence data showed that the carbapenmase blaIMI-1 is encoded on an EcloIMEX putative mobile element

    Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae

    No full text
    Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution

    Temperature and nutrient limitations decrease transfer of conjugative IncP-1 plasmid pKJK5 to wild Escherichia coli strains

    No full text
    Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10–1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (−3 logs for synthetic wastewater; −6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions
    corecore