707 research outputs found

    Structural characterization of YBa(2)Cu(3)O(7)/Y(2)O(3) composite films

    Full text link
    Using 4-circle x-ray diffraction and transmission electron microscopy we have studied the microstructure and in-plane orientation of the phases present in thin film composite mixtures of YBa(2)Cu(3)O(7) and Y(2)O(3). We see a high degree of in-plane orientation and have verified a previous prediction for the in-plane order of Y(2)BaCuO(5) on (110) MgO. Transmission electron microscopy shows the composite films to be a mixture of two phases, with YBCO grain sizes of 1 micron. We have also compared our observations of the in-plane order to the predictions of a modified near coincidence site lattice model.Comment: To be published in Journal of Materials Research, (4 pages, 4 jpeg figures

    Proximity effect in Nb-Mo layered films: Transition temperature and critical current dependence on period

    Full text link
    The behavior of the transition temperature and critical current density for a Mo/Nb repeated bilayer system as a function of the number of periods was explored. The measured values of the transition temperature are compared to the theoretical predictions for the proximity effect in the dirty limit. We find that the transition temperature does not decrease as the number of periods increase. In addition, inductive critical current density measurements also show a scaling that indicates the superconductivity properties are not dependent on the number of bilayers.Comment: 13 pages, 6 figures, to be published Journal of Applied Physic

    Techniques to stimulate and interrogate cell–cell adhesion mechanics

    Get PDF
    Cell–cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell–extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell–cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell–cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell–cell adhesion from cell pairs to monolayers

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Measurement of the half-life of the T=12\frac{1}{2} mirror decay of 19^{19}Ne and its implication on physics beyond the standard model

    Get PDF
    The 12+→12+\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ superallowed mixed mirror decay of 19^{19}Ne to 19^{19}F is excellently suited for high precision studies of the weak interaction. However, there is some disagreement on the value of the half-life. In a new measurement we have determined this quantity to be T1/2T_{1/2} = 17.2832±0.0051(stat)17.2832 \pm 0.0051_{(stat)} ±0.0066(sys)\pm 0.0066_{(sys)} s, which differs from the previous world average by 3 standard deviations. The impact of this measurement on limits for physics beyond the standard model such as the presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl

    emiT: an apparatus to test time reversal invariance in polarized neutron decay

    Get PDF
    We describe an apparatus used to measure the triple-correlation term (\D \hat{\sigma}_n\cdot p_e\times p_\nu) in the beta-decay of polarized neutrons. The \D-coefficient is sensitive to possible violations of time reversal invariance. The detector has an octagonal symmetry that optimizes electron-proton coincidence rates and reduces systematic effects. A beam of longitudinally polarized cold neutrons passes through the detector chamber, where a small fraction beta-decay. The final-state protons are accelerated and focused onto arrays of cooled semiconductor diodes, while the coincident electrons are detected using panels of plastic scintillator. Details regarding the design and performance of the proton detectors, beta detectors and the electronics used in the data collection system are presented. The neutron beam characteristics, the spin-transport magnetic fields, and polarization measurements are also described.Comment: 15 pages, 13 figure

    Unconventional one-magnon scattering resistivity in half metals

    Full text link
    Low-temperature resistivity of half-metals is investigated. To date it has been discussed that the one-magnon scattering process in half-metals is irrelevant for low-temperature resistivity, due to the fully spin-polarized electronic structure at the ground state. If one takes into account the non-rigid-band behavior of the minority band due to spin fluctuations at finite temperatures, however, the unconventional one-magnon scattering process is shown to be most relevant and gives T^3 dependence in resistivity. This behavior may be used as a crucial test in the search for half-metallic materials which are potentially important for applications. Comparison with resistivity data of La_1-x Sr_x MnO_3 as candidates for half-metals shows good agreement.Comment: 4 pages, including 5 eps figures. To be published in J. Phys. Soc. Jpn. vol. 69 No. 7 (2000
    • …
    corecore